Queue length distribution and numerical calculation of queueing system with delay Min(N,D)-policy

Expand
  • 1. School of Mathematics and Statistics, Hexi University, Zhangye 734000, Gansu, China; 2. School of Mathematics and Software Science, Sichuan Normal University, Chengdu 610066, China; 3. School of Science, Sichuan University of Science and  Engineering, Zigong 643000, Sichuan, China

Received date: 2015-07-03

  Online published: 2016-06-15

Abstract

This paper considers the M/G/1 queueing system under the delay Min(N,D)-policy. By using the renewal process theory, the total probability decomposition technique and the Laplace transform tool, we study the transient and equilibrium properties of the queue length from the beginning of the any initial state, and obtain both the recursion expressions of the Laplace transformation of the transient queue length distribution and the recursion expressions of the steady state queue length distribution. Meanwhile, we present the explicit expression of the additional queue-length distribution. Furthermore, we discuss some special cases, such as N \to \infty, or D \to \infty, or N=1 and P{Y=0}=1 or P{Y=0}=1, respectively.  Finally, by numerical examples, we discuss the sensitivity of the steady state queue length distribution towards system parameters, and illustrate the important value of the expressions of the steady state queue length distribution in the system capacity optimum design.

Cite this article

WEI Yingyuan, TANG Yinghui, YU Miaomiao . Queue length distribution and numerical calculation of queueing system with delay Min(N,D)-policy[J]. Operations Research Transactions, 2016 , 20(2) : 23 -37 . DOI: 10.15960/j.cnki.issn.1007-6093.2016.02.002

References

[1] Kella O. The threshold policy in the M/G/1 queue with server vacations [J]. Naval Research Logistics, 1989, 36(1): 111-123.
[2] Hur S, Paik S J. The effect of different arrival rates on the N-policy of M/G/1 with server setup [J]. Applied Mathematical Modelling, 1999, 23(4): 289-299.
[3] 唐应辉. 延迟 N-策略 M/G/1 排队系统队长的瞬态和稳态分布 [J]. 系统工程理论与实践, 2007, 27(11): 130-134.
[4] 吴锦标, 尹小玲, 刘再明. 具有 N-策略和负顾客的反馈抢占型的 M/G/1 重试可修排队系统 [J]. 应用数学学报, 2009, 32(2): 323-334.
[5] Wang K H, Huang K B. A maximum entropy approach for the \langle p, N\rangle-policy M/G/1 queue with a removable and unreliable server [J]. Applied Mathematical Modelling, 2009, 33: 2024-2034.
[6] 罗海军, 朱翼隽. 带有负顾客的 N-策略工作休假 M/M/1 排队 [J]. 运筹与管理, 2010, 19(1): 100-105.
[7] 唐应辉, 蒲会, 余玅妙. 带启动时间的 N-策略 M/G/1 排队系统的队长 [J]. 系统工程的理论与实践, 2011, 31(1): 131-137.
[8] Tadj L, Choudhury G, Rekab K. A two-phase quorum queueing system with bernoulli vacation schedule, setup, and N-policy for an unreliable server with delaying repair [J]. International Journal Services and Operations Management, 2012, 12(2): 139-164.
[9] Lee H W, Beak J W, Jeon J. Analysis of the M^X/G/1 queue under D-policy [J]. Stochastic Analysis and Applications, 2005, 23(4): 785-808.
[10] Wang K H, Kuo C C, Ke J C . Optimal control of the D-Policy M/G/1 queueing system with server breakdowns [J]. American Journal of Applied Sciences, 2008, 5(5): 565-573.
[11] Lee H W, Kim S A, Lee S W. Analysis and cost optimization of the M/G/1 queue under the D-policy and LCFS discipline [J]. Stochastic Analysis and Applications, 2008, 26(1): 39-59.
[12] 蒲会. 延迟 D-策略 M/G/1(可修)排队系统分析 [D]. 成都: 四川师范大学, 2010.
[13] Gakis G K, Rhee H K, Sivazlian B D. Distributions and first moments of the busy and idle periods in controllable M/G/1 queueing models with simple and dyadic policies [J]. Stochastic Analysis and Applications, 1995, 13(1): 47-81.
[14] Wang K H, Ke J C. Control policies of an M/G/1 queueing system with a removable and non-reliable server [J]. International Transactions in Operational Research, 2002, 9(2): 195-212.
[15] 井彩霞, 崔颖, 田乃硕. Min(N, V)-策略休假的 M/G/1 排队系统分析 [J]. 运筹与管理, 2006, 15(3): 53-58.
[16] Lee H W, Seo W J. The performance of the M/G/1 queue under the dyadic Min(N, D)-policy and its cost optimization [J]. Performance Evaluation, 2008, 65(10): 742-758.
[17] Lee H W, Seo W J, Lee S W, et al. Analysis of the MAP/G/1 queue under the Min(N, D)-policy [J]. Stochastic Models, 2010, 26(1): 98-123.
[18] Jiang F C, Huang D C, Yang C T, et al. Design strategy for optimizing power consumption of sensor node with Min(N, T) policy M/G/1 queuing models [J]. International Journal of Communication Systems, 2012, 25(5): 652-671.
[19] 唐应辉, 吴文青, 刘云颇, 等. 基于多重休假的 Min(N, V)-策略 M/G/1 排队的队长分布 [J]. 系统工程理论与实践, 2013, 33(1): 1-14.
[20] 唐应辉, 唐小我. 排队论------基础与分析技术 [M]. 北京: 科学出版社, 2006.
[21] Doetsh  G. Theorie und Anwendung der Laplace Transformation [M]. New York: Dover, 1943.
Outlines

/