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Abstract We formulate the sharing bicycle relocating practice as a novel opti-
mization problem, which can be regarded as a variant of the classic TSP problem while
its objective function is no longer the length of the Hamiltonian tour but the carbon
emission. A well-adopted carbon emission formula that is the product of the load of
the vehicle and the travel distance is employed and we propose two heuristic algorithms
Greedy and TSP-based, inside both of which we set the priority to reduce the load of
the vehicle for minimizing carbon emission. The feasibility of both algorithms is proven
and numerical experiments are conducted to validate their performance empirically. The
promise of Greedy over TSP-based algorithm is shown to the sharing bicycle companies
for their daily dispatching practice.
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China promises to reduce its carbon emission up to 40–50% by 2020, in comparison with

the total emission in 2005. This is one of the worldwide efforts in resolving global warming

and climate change. In China, the transportation industry alone is estimated to release

about 9% of the overall carbon emission, for which initiatives including carbon emission tax

and re-developing operation strategies are required.

Sharing bicycle, as a new shared economic form, is in line with the sustainable devel-

opment concept of “innovation, green, open, sharing, coordination”. Sharing bicycles are

conveniently used by public for a ride of one to several kilometers, from a hotspot such as

a transit station, a shopping mall entrance or a residential district entrance, to another.

Similar to rush hours, bicycle riding also shows a one-way pattern, that between two sta-

tions, there are many more rides from one to the other during certain periods of time, while

the other periods tend to have more rides going the opposite way. Such a riding pattern

causes the phenomenon of sharing bicycle overflow or shortage at many stations, despite the

continuous efforts in selecting sites as stations to balance the needs[1, 2].

To resolve the subsequent problems of “no space to return the bicycle” and “no bicycle

to borrow” at a station, it is necessary for the companies to re-locate the bicycles, that is,

to collect the sharing bicycles from overflowing stations and re-distribute them to shortage

stations. A usual practice process is first to calculate for each station the number of bicycles

in surplus or in shortage, using the current number and the historical needs at the station,

then to dispatch a service vehicle of certain capacity and to plan a tour for the vehicle to

visit each station once, such that if the station is overflowing, then the extra bicycles are

collected, or otherwise the shortage is filled up. Since the service vehicles are fuel-powered,

both their selection and the service tour over all the stations are decided based on the

principle of minimum carbon emission, to achieve the most “green and efficient” dispatching.

We remark that in the literature, there are existing research on other objectives besides the

traditional vehicle travel time, travel distance[3], and carbon emission, such as to minimize

the deviation from the target numbers of bicycles for the stations[4, 5].

One sees that the above dispatching practice process, after the service vehicle is chosen,

becomes a vehicle routing problem (VRP). Furthermore, since it is generally true that the

vehicle leaves from the sharing bicycle depot and later comes back to the depot, and the

planned tour is Hamiltonian in that every station is visited exactly once, the dispatching

practice is actually a variant of the traveling salesman problem (TSP). Note that we do

not have to visit a station that is neither overflowing nor lacking bicycles, and thus every

station under consideration either has some positive number of bicycles to be collected by

the service vehicle, or has a negative number of bicycles indicating the shortage to be filled

up. Our problem is thus a generalization of the delivery TSP[6, 7, 8], in which each station is

associated with either +1 or −1. Moreover, recall that our objective function is to minimize

the carbon emission, which is determined by both the distance traveled and the load of the

vehicle (including a fixed portion representing the weight of the vehicle, if necessary); we

will present some more details on the formula for calculating carbon emission in the next
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section. Therefore, our problem is not really any TSP variants that have been studied in

the literature to minimize (traditionally only) the length of the tour.

In this paper, we attempt to formulate such a sharing bicycle relocating practice as

an optimization problem, propose heuristic algorithms, and validate them empirically. Our

goal is to show the promise of these heuristics to the sharing bicycle companies for their

daily dispatching practice.

The rest of the paper is organized as follows. In the next section, we first present our

optimization problem that models the sharing bicycle relocating practice, review briefly the

formula for calculating carbon emission in terms of the traveled distance and the vehicle

load, and provide a brief literature review on the past research related to our optimization

problem. We propose two heuristic algorithms, namely Greedy and TSP-based, for our

optimization problem in Section 3. In Section 4, we conduct the empirical experiments based

on two real datasets of sharing bicycle stations in Xi’an, China, summarize the results, and

discuss important discoveries that could be helpful for the real dispatching practice. Lastly

in Section 5, we conclude the paper to provide some possible broader implications of the

work and identify potential areas for future work.

1 Preliminaries

1.1 Problem description

We first formulate the optimization problem, denoted as SBR, from the Sharing Bicycle

Relocating practice. In the SBR problem, we are given an edge-weighted complete graph

G = (V, d(·)) representing the underlying traffic network, where a vertex of V represents a

station, the edge weight d(·) measures the distance (or the travel time) between two stations,

and the edge weights satisfy the triangle inequality.

Among the vertex set V = {v0, v1, v2, · · · , vn}, where n > 2, v0 represents the sharing

bicycle depot which is assumed to have unlimited storage and an unlimited supply of sharing

bicycles, and each vi, i = 1, 2, · · · , n, represents a sharing bicycle station associated with an

integer qi stating the known surplus number of bicycles, when qi > 0, or the known shortage,

when qi < 0.

There is a service vehicle of capacity Q and it is obliged to collect the surplus bicycles

from all the overflowing stations, re-distribute them to shortage stations to fully satisfy their

needs, and then come back to the depot. To this purpose, the vehicle has to carry extra q0 =

max{0,−
∑n

i=1 qi} bicycles out of the depot, and bring back to the depot max{0,
∑n

i=1 qi}
bicycles. It is assumed without loss of generality that |qi| 6 Q/2 for each i and |

∑n
i=1 qi| 6

Q, for the sake of feasibility, that is, there exists a feasible Hamiltonian tour for the service

vehicle∗. The cost for the vehicle traveling from vi to vj is measured by carbon emission,

∗One sees that this is necessary by looking at a small instance of three stations, two of which each has a
surplus Q/2 while the third has a shortage of 1+Q/2. Then a service vehicle of capacity strictly less than Q
is not able to fulfill the re-locating purpose, under the Hamiltonian constraint that every station is visited
exactly once and the constraint that the service vehicle leaves the depot with 0 bicycles and comes back to
the depot with Q/2− 1 bicycles.
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which is the product of the load of the vehicle (in the number of bicycles) and the travel

distance d(vi, vj)
[9, 10] (see also discussion in Subsection 2.2). In general, the vehicle itself

has weight that is equivalent to a fixed number a0 of bicycles, and thus the load is a0 + c,

with c being the actually number of bicycles at the back of the vehicle.

The goal of the SBR problem is to plan a Hamiltonian tour for the service vehicle such

that 1) each station is visited exactly once, 2) its need is satisfied in full (that is, either the

surplus bicycles are fully collected or the shortage is fully filled), and 3) the total carbon

emission of the service vehicle is minimized. A Hamiltonian tour satisfying the first two

conditions is said to be feasible. Given the easily seen NP-hardness of the SBR problem

(see also discussion in Subsection 2.3), we propose and empirically validate two heuristic

algorithms to compute feasible and low carbon emission solutions to the problem.

For simplicity we denote dij = d(vi, vj). We next formulate an integer quadratic pro-

gram (IQP) for the SBR problem, borrowing the ideas for the classic TSP problem. To this

purpose, we define a binary variable xij = 1 if and only if the arc (i.e., directed edge) from

vi to vj is included in the Hamiltonian tour. We note from n > 2 that xii = 0 (i.e., no loop),

and xij = 1 implies xji = 0 (i.e., each edge is used at most once), for all i, j ∈ {0, 1, 2, · · · , n}.
Let ci denote the to-be-determined number of bicycles at the back of the vehicle leaving the

station vi, which is a non-negative integer less than or equal to Q; specifically, c0 = q0. If

the vehicle travels along the edge from vi to vj (that is, xij = 1) and either picks up the

surplus or fills the shortage at vj , then its number of bicycles at the station vj is cj = ci +qj ,

which must also be a non-negative integer less than or equal to Q, and the traveling along

this arc (vi, vj) incurs an amount (a0 + ci)dij of carbon emission.

min

n∑
i=0

n∑
j=0

(a0 + ci) · dijxij (1)

s.t.
∑n

j=0 xij = 1, ∀i ∈ {0, 1, 2, · · · , n}, (2)∑n
i=0 xij = 1, ∀j ∈ {0, 1, 2, · · · , n}, (3)∑

i,j∈U xij 6 |U | − 1, ∀U ⊂ {0, 1, 2, · · · , n}, (4)

c0 = max{0,−
∑n

i=1 qi}, (5)

cj =
∑n

i=0 xij(ci + qj), ∀j ∈ {1, 2, · · · , n}, (6)

0 6 cj 6 Q, ∀j ∈ {1, 2, · · · , n}, (7)

xij ∈ {0, 1}, ∀i, j ∈ {0, 1, 2, · · · , n}. (8)

In the above IQP formulation, (1) is the objective to minimize the total carbon emission,

where the load of the vehicle is the sum of the vehicle weight a0 and the number of bicycles

ci it carries when leaving vi; the constraints (2) and (3) state that every vertex vi is visited

by the service vehicle exactly once; the constraint (4) forces, together with (2) and (3),

the tour to be Hamiltonian; the constraint (5) says that the service vehicle starts from the

depot, carrying with it q0 bicycles, and the constraints (6) and (7) express how the load

changes along the tour and, the number of bicycles carried by the vehicle should not exceed
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the vehicle capacity at any point, nor go below 0.

1.2 Carbon emission formula

Carbon emission, among several other emissions from fuel-powered engines, is estimated

to be directly proportional to fuel consumption[11]. Many elements influence fuel consump-

tion, including travel related factors such as driving style, vehicle characteristics such as

engine size, road geometry such as gradients, and meteorological conditions such as ambient

temperature. After averaging out most factors and regressing on the load of the vehicle,

fuel consumption, and thus the subsequent carbon emission per unit distance, often takes

an affine form of a0 + a1 · c[9, 10], where a0 is the amount of fuel consumption by the vehicle

itself, a1 is the additional amount of fuel consumption with unit goods on the vehicle, and

c is the total number of units of goods.

We adopt this affine emission per unit distance in our formulation, but scale it (i.e.,

dividing it by a1) to use c to denote the number of bicycles at the back of the service vehicle

and a0 to denote the weight of the service vehicle itself as an integral number of bicycles.

That is, the carbon emission per unit distance for the service vehicle is its load of a0 + c.

In practice, there are at least three different capacity vehicles that are available for

sharing bicycle companies in Xi’an, China and Chengdu, China, one of which has capacity

of Q = 15 and itself is so light that the weight is negligible, that is, a0 = 0. The other

two have capacities of 25 and 50, and their own weights are equivalent to the weights of 10

and 20 bicycles, respectively. In the empirical experiments, all three of these vehicles are

examined.

1.3 Related work

Our SBR problem is a variant of VRP, which has numerous applications in operations

research and has been studied extensively for more than six decades. For most VRP variants,

one major objective is to minimize the total distance traveled by the service vehicle (or by a

group of multiple vehicles). This includes the classic TSP problem, for which Christofides’

algorithm is a 1.5-approximation[12], that is, it returns a Hamiltonian tour of length within

1.5 times of the minimum. When the service vehicle needs to pick up goods from some

customers (e.g., extra bicycles at the overflowing stations in our case) and drop them off to

the other customers (e.g., the shortage stations in our case), the problem is referred to as

delivery TSP[13]. A special case of the delivery TSP, also a special case of our SBR problem,

in which each qi is either +1 or −1, was studied by Anily and Hassin[6], who presented a

2.5-approximation when the service vehicle has capacity Q = 1; Chalasani and Motwani[7]

continued the study and proposed a better 2-approximation when the service vehicle has

capacity Q = 1, a 9.5-approximation when the service vehicle has an arbitrary but finite

capacity Q, and a 2-approximation when the service vehicle has infinitely large capacity

Q = +∞. The 9.5-approximation is improved to a 5-approximation by Charikar et al.[8].

The SBR problem we formulated seems novel and we found no existing work on it in

the literature (to the best of our knowledge). When carbon emission has a weak dependence
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on the number of bicycles carried by the vehicle but is proportional to the traveled distance

(that is, a0 � Q), our SBR problem reduces to the classic TSP problem. Therefore, the

SBR problem is NP-hard and likely more difficult to approximate.

2 Two heuristic algorithms

Given that carbon emission along an edge is measured as the product of the load of the

vehicle and the weight of the edge, intuitively one should seek to reduce the vehicle load as

much as possible and only pick up surplus bicycles from an overflowing station as the last

choice; one should also seek to drive to the “closest” station from the current station, for

either pick-up or drop-off purposes. In the following two algorithms, reducing the vehicle

load is common to both and has a higher priority, while the “closest” station is defined

differently, one globally in the greedy algorithm and the other guided in the TSP-based

algorithm.

2.1 Greedy algorithm

Recall that the number of bicycles at the back of the service vehicle leaving the station

vi is ci, satisfying 0 6 ci 6 Q. The greedy algorithm decides the next station to drive to as

follows.

Let S+ denote the set of unvisited stations with surplus, and S− denote the set of

unvisited stations vj with shortage qj > −ci (that is, its shortage can be filled if chosen so

in this iteration).

Recall that we have the priority to reduce the vehicle load. If S− 6= ∅, then the vehicle

moves to the closest station vj ∈ S− (that is, vj = arg min{d(vi, vj) | vj ∈ S−}), drops

down exactly −qj bicycles, and updates the number of bicycles at the back as cj = ci + qj ;

otherwise, the vehicle moves to the closest station vj ∈ S+ (that is, vj = arg min{d(vi, vj) |
vj ∈ S+}), collects the surplus qj , and updates the number of bicycles at the back as

cj = ci + qj . A high level description of an iteration of the algorithm is depicted in the

following.

Algorithm Greedy:

Each iteration (the vehicle is at vi, with ci 6 Q bicycles at the back): set S+ =

{vj | vj is not visited, and qj > 0}; set S− = {vj | vj is not visited, and − ci 6 qj < 0}; if

S− 6= ∅, then let vj = arg min{d(vi, vj) | vj ∈ S−}; otherwise, let vj = arg min{d(vi, vj) |
vj ∈ S+}; the vehicle moves to vj , and updates the number of bicycles as cj = ci + qj .

Theorem 1 The algorithm Greedy runs in O(n2) time and outputs a feasible tour,

where n is the number of stations.

Proof Note that when S− = ∅, if there is no more unvisited shortage station, then

the vehicle is able to pick up the surplus bicycles from all the remaining unvisited stations

and thus ci + qj 6 Q by the assumption |
∑n

i=1 qi| 6 Q; if there are unvisited shortage

stations, then we conclude from |qh| 6 Q/2 for any h ∈ {1, 2, · · · , n} that ci < Q/2 and thus

ci + qj < Q. In other words, the vehicle is able to collect all the surplus bicycles from the



No.3 Sharing bicycle relocating with minimum carbon emission 81

station vj ∈ S+. This proves that the algorithm Greedy terminates and outputs a feasible

tour.

Since each iteration takes O(n) time, the overall running time for the algorithm Greedy

is in O(n2). �

2.2 TSP-based algorithm

Assume an approximate TSP tour has been computed (in our implementation, by

Christofides’ 1.5-approximation), which takes only the edge weights into consideration with

the objective to minimize the total travel distance, and the tour is C = 〈v0, v1, v2, · · · , vn, v0〉.
Note that the depot v0 is regarded as both a surplus and shortage station, and at the start,

the vehicle carries c0 = max{0,−
∑n

j=1 qj} bicycles.

Starting at v0, we fix a direction on C for the vehicle, such that the stations are visited

by the vehicle in a sequential order. That is, C is the guide tour in our algorithm. The

vehicle maintains v+ and v− to be the first unvisited surplus station and the first unvisited

shortage station, respectively, and they are initialized to be the first ones in the sequential

order from v0. At the beginning of an iteration (a high level description of an iteration in

the TSP-BASED algorithm is depicted in the following), the vehicle stands at a station, has

c bicycles at the back, decides the next station to drive to and updates v+ and v− as follows.

Again recall that we have the priority to reduce the vehicle load. There are three

possible situations below with decreasing preference:

1) The vehicle can fill the shortage of v−. From its current location, the vehicle moves

to v−, and subsequently updates the number c of bicycles and updates the station v− to be

the next unvisited shortage station in the sequential order from the current location.

2) The vehicle cannot fill the shortage of v−. If any, let vj be the unvisited first shortage

station on the way from the current station to v+, of which the shortage can be filled by

the vehicle; the vehicle moves to vj , and subsequently updates the number c of bicycles.

(Comment: In this case, vj comes after v− in the sequential order, but is visited before

v−; therefore, v− doesn’t need to be updated.)

3) The vehicle cannot fill the shortage of v−, neither can it fill the shortage of any

shortage station on the way from the current station to v+, or there is no shortage station

on the way from the current station to v+ at all. The vehicle collects the surplus of the first

unvisited surplus station in the sequential order from the current location, and subsequently

updates the number c of bicycles; furthermore, if this first surplus station is v+, then it

updates the station v+ to be the next unvisited surplus station in the sequential order from

the current location.

(Comment: If this first surplus station is not v+, then it comes after v+ in the sequential

order; therefore, v+ doesn’t need to be updated.)

Algorithm TSP-based:

Each iteration: (stations v+ and v− have been defined): if the vehicle can fill the

shortage of v−, it moves to v−, updates c and v−; if the vehicle can fill the shortage of vj on

the way to v+, it fills the shortage of vj , and updates c; if the vehicle cannot fill the shortage
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of any station on the way to v+, it moves to the first surplus station vj , and updates c; if

vj = v+, then it updates v+.

Theorem 2 The algorithm TSP-based runs in O(n2.5/log n) time and outputs a

feasible tour, where n is the number of stations.

Proof When v− becomes undefined (or v− = v0, if the depot v0 is viewed also as a

shortage station), the vehicle is able to pick up the surplus bicycles from all the unvisited

stations, including v+, by the assumption |
∑n

i=1 qi| 6 Q; otherwise, we conclude from

|qh| 6 Q/2 for any h ∈ {1, 2, · · · , n} that c < Q/2 and thus the vehicle is able to collect all

the surplus bicycles from the first unvisited surplus station on the way to v+. This proves

the feasibility.

Christofides’ 1.5-approximation algorithm involves an O(n2.5/ log n)-time phase for

computing a maximum weight matching[14], which is dominant. Afterwards, each itera-

tion takes O(n) time, and thus the overall running time for the algorithm TSP-based is in

O(n2.5/ log n). �

3 Numerical experiments

We first describe the datasets and the settings we used in the empirical experiments,

then summarize the main statistics on the results, followed by additional experiments and

points of discussion.

3.1 Datasets and settings

We have obtained two real datasets of 25 and 110 sharing bicycle stations in Xi’an,

China. The smaller one (referred to as real 25-station dataset) is from a northern small

district of Xi’an city, and it doesn’t have its own depot. The larger one (referred to as real

110-station dataset) is a superset of the former, it covers a much larger northern area of

Xi’an city, and it has its own depot, which sits roughly at the geometric center. In our

experiments, we add a pseudo-depot to the 25-station dataset at the average latitude and

longitude of the 25 stations (this pseudo-depot is very close to the 110-station dataset depot,

within a few tenths of a degree both latitude and longitude).

We note that the sharing bicycle stations are quite well chosen, so that the surplus

and the shortage (collected at one time for re-locating purpose) are mostly a single digit,

with the maximum being slightly over a dozen. In both datasets, we have the latitude

and the longitude for each station, which are used to calculate the inter-station approximate

Manhattan distances between stations by using a factor of 110.574 km for one latitude degree

and 111.320 × cos(latitude) km for one longitude degree. We remark that the Manhattan

distance matches well with the grid-like street layout in Xi’an city.

Besides the above two, we simulated datasets with n ∈ [16, 20] stations using the first

n stations from the real 25-station dataset plus the depot, which are referred to as the

n-station datasets, respectively.
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For each n-station dataset, n ∈ [16, 20], we independently randomly generate 100 sim-

ulated instances on the same set of stations, by only simulating the surplus/shortage value

for every station within the closed interval [−Q/2, Q/2] and ensuring the total is within

[−Q,Q]. Recall that we have three different capacities Q = 15, 25, 50, for which the weights

of the service vehicles are equivalent to a0 = 0, 10, 20 bicycles, respectively. For the 25-

station dataset and the 110-station dataset, we also independently randomly generate 100

simulated instances for each capacity Q = 15, 25, 50. We note that the real instances of the

n-station datasets for n ∈ [16, 20], that is, instances with the real surplus/shortage values,

correspond to Q = 15; and the real instances of the 25-station dataset and the 110-station

dataset correspond to Q = 25. Each real instance replaces one corresponding simulated

instance in the experiments.

3.2 Algorithms and their implementation

We examine the performance of the two proposed heuristic re-locating algorithms

Greedy and TSP-based, both were implemented in a Python (version 3.7.0) program. We

employed the “math”, “random”, “csv” and “sys” libraries. Both algorithms can run on all

the instances as their time complexities are low.

For each instance of the n-station datasets with n ∈ [16, 20], we computed the optimal

solution in CPLEX, where the IQP formulation was implemented using the CPLEX Studio

IDE 12.10.0 (the implementation is denoted as IQP-Cplex from here on) and the instances

were run from the prompt using the oplrun command. In more details, the IQP formulation

is written in the OPL language with some execution blocks written in JavaScript for pre-

processing (calculating distances and problem setup) and post-processing (writing results

into a file). Due to the high time and space complexity in the size of the instance, two of the

CPLEX parameters were changed to more efficiently use memory while solving each instance:

the memory reduction switch was set to “conserve memory” wherever possible, and the

variable selection strategy was set to “strong branch” (partially solving subproblems to

see which branch is the most promising).

3.3 Results

For every instance, we collect the following values whenever applicable:

• IQP-Cplex: the service path, the total carbon emission, the travel distance by the

vehicle, and the running time;

• Greedy: the service path, the total carbon emission, and the travel distance by the

vehicle;

• TSP-based: the length of the guide TSP tour by the component Christofides’ algorithm,

the service path, the total carbon emission, and the travel distance by the vehicle.

We remark that running either the Greedy or the TSP-based algorithm on a collection

of 100 instances associated with a couple (n,Q) took within seconds on a computer with
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a Ryzen 5 2600 CPU @3.4GHz and 16Gb of 3 000 MHz DDR4 Ram; we therefore did not

record their detailed running time for the experiments.

Table 1 summarizes the experimental results on the n-station datasets with n ∈ [16, 20]

(and the service vehicle has capacity Q = 15). The second row lists the lengths of the TSP

tours by Christofides’ algorithm; we note that for all the 100 simulated instances associated

with (n, 15), their TSP tours are the same since the simulation is on the surplus/shortage

values only. The next three rows contain the average emissions of the optimal solutions, the

solutions by Greedy, and the solutions by TSP-based, and their standard deviations.

Table 1 The performance of all three algorithms IQP-Cplex, Greedy and TSP-based on the 100
simulated instances for the n-station datasets, where n ∈ {16, 17, · · · , 20}. In this experiment, a
light truck is dispatched with its capacity Q = 15 and its own weight ignored. Rows 3–5 (6–8,
respectively) contain the average carbon emissions (average travel distances, respectively) and their
standard deviations over the 100 instances, in the solutions by the three algorithms.The last row
records the average running times of IQP-Cplex and the standard deviations

#Stations 16 17 18 19 20

Christofides’ distance 46.76 46.84 44.26 45.47 46.69

IQP-Cplex emission 110.75±18.31 110.87±21.79 121.26±22.83 119.07±19.61 121.63±19.01

Greedy emission 188.37±44.09 189.04±43.75 213.50±51.24 220.65±55.84 218.74±51.07

TSP-based emission 229.75±52.15 255.32±69.64 258.47±64.29 252.58±60.50 256.84±58.52

IQP-Cplex distance 50.81±5.41 52.43±4.94 59.23±5.79 59.22±6.57 61.04±6.20

Greedy distance 49.91±6.15 51.40±5.63 57.25±6.46 58.75±6.77 59.97±6.52

TSP-based distance 58.43±7.09 63.92±7.61 66.59±9.05 66.50±9.82 68.54±8.82

IQP-Cplex time (seconds) 12.68±36.90 81.15±176.65 1 673.73±5 331.30 2 028.63±5 685.02 3 756.00±8 362.41

For n = 20, the detailed emission values by the three algorithms are plotted in Figure

1(a), where the instances are sorted in their increasing optimal emission order. One sees that

Greedy and TSP-based solutions emit on average about 1.76 and 2.15 times, respectively,

that of the optimal solutions. Interestingly, in terms of travel distance, Greedy tours are often

shorter, and in fact about 2% shorter than the tour in the optimal solutions on average; while

TSP-based tours are on average about 15% longer than the tour in the optimal solutions.

The detailed distance values for these 100 instances by the three algorithms are plotted in

Figure 1(b), where the instances are sorted in their increasing Greedy distance order.

From Fig. 1(a), one also sees that, for these 100 instances, the emissions by Greedy

and TSP-based fluctuate up and down, but interestingly the general tendencies are increas-

ing. That is, in general, the emissions by Greedy and TSP-based correlate positively to the

minimum emissions, with their correlation coefficients 0.686 and 0.622 respectively. For dis-

tances, one sees from Fig. 1(b) that 1) there doesn’t seem to be any correlation between any

two groups of the distances (their pairwise correlation coefficients are 0.272,−0.017, 0.386,

respectively), 2) TSP-based looks inferior to both Greedy and IQP-Cplex on majority of the

instances, and 3) IQP-Cplex wins over Greedy on 42 instances and thus they are competitive

to each other.

The last row of Table 1 records the average running time of the IQP-Cplex solver,

roughly seconds to minutes on a 16/17-station instance, half an hour on an 18/19-station

instance, and one hour on a 20-station instance. Figure 2 plots the detailed running times on

the 100 simulated instances of the 20-station dataset by the IQP-Cplex algorithm, sorted in

their running time order. One sees that 1) there are huge differences in the solution spaces
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Fig. 1 The performances of the three algorithms IQP-Cplex, Greedy and TSP-based on the 100
simulated instances of the 20-station dataset, when a light service vehicle of capacity Q = 15 is
deployed: (a) The carbon emissions and (b) the travel distances. Note that in the two plots, the
instances are sorted in different orders for better viewing

explored by IQP-Cplex, 2) 79 out of the 100 instances were solved by IQP-Cplex under an

hour, while 13 instances required longer than two hours. The standard deviations in the last

row of Table 1 are very large, suggesting the huge running time variation across different

instances; indeed, one sees from Fig. 2 that the shortest and longest times for a 20-instance

are 86 seconds and 14 hours, respectively.
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Fig. 2 The running time of IQP-Cplex on the 100 simulated instances of the 20-station dataset,
where the instances are sorted in increasing running time order

From the 100 instances associated with the couple (20, 15), we pick two of them to

illustrate the service paths by the three algorithms in Fig. 3. On one instance Greedy

significantly outperforms TSP-based in carbon emission, and the carbon emissions for these

three paths are 121.13, 146.90, 353.48 by IQP-Cplex, Greedy, TSP-based, respectively; on

the other instance TSP-based significantly outperforms Greedy in carbon emission, and the

carbon emissions for these three paths are 117.22, 176.41, 277.57 by IQP-Cplex, Greedy,

TSP-based, respectively. A general observation from these two instances is that, a good

service path does not seem to cross over itself too often.



86 SU Bing, CARLSON Wyatt, FAN Jiabin, et al. Vol.26

34.32

34.30

34.28

34.26

34.24

L
at

it
u
d
e

Greedy won: cplex path

(a) The service paths by IQP-cplex for the two instances

(b) The service paths by greedy for the two instances

(c) The service paths by TSP-based for the two instances

108.92 108.94 108.96 108.98 109.00
Longitude

34.32

34.30

34.28

34.26

34.24

L
at

it
u
d
e

TSP won: cplex path

108.92 108.94 108.96 108.98 109.00
Longitude

34.32

34.30

34.28

34.26

34.24

L
at

it
u
d
e

Greedy won: greedy path

108.92 108.94 108.96 108.98 109.00
Longitude

34.32

34.30

34.28

34.26

34.24

L
at

it
u
d
e

TSP won: greedy path

108.92 108.94 108.96 108.98 109.00
Longitude

34.32

34.30

34.28

34.26

34.24

L
at

it
u
d
e

Greedy won: TSP path

108.92 108.94 108.96 108.98 109.00
Longitude

34.32

34.30

34.28

34.26

34.24

L
at

it
u
d
e

TSP won: TSP path

108.92 108.94 108.96 108.98 109.00
Longitude

Fig. 3 The service paths generated by the three algorithms on two simulated instances of the 20-
station dataset, on the left of which Greedy significantly outperforms TSP-based in carbon emission
and on the right TSP-based significantly outperforms Greedy. (a) the paths by IQP-Cplex, with
emission 121.13 and travel distance 52.52 (left) and emission 117.22 and travel distance 65.68 (right);
(b) the paths by Greedy, with emission 146.90 and travel distance 53.67 (left) and emission 277.57
and travel distance 55.87 (right); (c) the paths by TSP-based, with emission 353.48 and travel
distance 97.41 (left) and emission 176.41 and travel distance 68.82 (right). In the figures, the dots
represent labelled stations with the depot labelled 0; a directed edge tells from which station to
another the service vehicle moves along the streets

Since IQP-Cplex did not finish any instance associated with (25, 15) within the 24-hour

time limit, we collected statistics for only the Greedy and TSP-based algorithms on the

instances for the 25- and 110-station datasets. Table 2 summarizes the experimental results.

The second row lists the lengths of the TSP tours by Christofides’ algorithm. The next three

groups of four rows each contain the results for deploying a light, a medium, and a heavy
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Table 2 The performance of the two algorithms Greedy and TSP-based on the 100 instances for
each of the 25-station and 110-station datasets. In the rows 3–6 (7–10, 11–14, respectively), a light
(medium, large, respectively) truck is dispatched with its capacity Q = 15 (25, 50, respectively) and
its weight equivalent to a0 = 0 (10, 20, respectively) bicycles

Q/a0 25-station won 110-station won

Christofides’ distance 54.99 175.52
Greedy emission

15/0

272.03±56.89 82 686.39±98.45 99
TSP-based emission 342.90±72.79 18 1 099.99±206.38 1
Greedy distance 73.23±7.38 87 192.13±20.45 99
TSP-based distance 88.29±11.81 13 291.31±38.37 1
Greedy emission

25/10

1 199.28±161.65 82 3 129.66±295.90 100
TSP-based emission 1 428.43±222.73 18 4 719.92±578.61 0
Greedy distance 74.42±8.11 84 194.47±15.73 100
TSP-based distance 86.43±12.26 16 287.97±31.36 0
Greedy emission

50/20

2 383.08±326.58 89 6 367.98±555.97 100
TSP-based emission 2 911.67±419.40 11 9 568.11±1 327.58 0
Greedy distance 73.18±8.26 89 196.91±15.80 100
TSP-based distance 86.51±10.80 11 285.32±36.45 0

truck, respectively, with capacity Q = 15, 25, and 50, respectively. These results include

the average emissions and the average travel distances in the solutions by Greedy and the

solutions by TSP-based, and the standard deviations. For both carbon emission and travel

distance, one sees that the solutions by Greedy are mostly better than the solutions by

TSP-based, across all three different capacity values; on the 25-station instances, Greedy

performs better on more than 80% of the instances, and on the 110-station instances, Greedy

performs better on all but one instance. Interestingly, one sees that the capacity Q does

not seem to affect the travel distance much, for both algorithms. However, the capacity

Q apparently affects emission. From this data (and the data on the n-station datasets for

n ∈ {16, 17, · · · , 20}), we might be able to safely make recommendations to the sharing

bicycle companies to adopt Greedy for their dispatching practice.

3.4 Discussion

3.4.1 Carrying extra bicycles doesn’t really help

One might argue that starting with q0 = max{0,−
∑n

i=1 qi} bicycles is too restricted

for the service truck, and perhaps carrying a certain number of extra bicycles could be

helpful. For example, in the illustration 3-station instance in which two stations each has

a surplus Q/2 while the third has a shortage of 1 + Q/2, if the service vehicle is allowed

an extra bicycle then one could pick up Q/2 from one surplus station, drop off the 1 + Q/2

bicycles to the shortage station, and move to the last station to pick up Q/2 bicycles before

returning to the depot.

We experimented with carrying extra 5 and 10 (but no more than Q − q0, to ensure

that the service vehicle capacity is never exceeded) bicycles when leaving the depot, for all

three different capacities, and collected the same statistics in Table 3.

From Table 3, and comparing against Table 2, one sees that carrying extra bicycles out
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Table 3 The performance of the two algorithms Greedy and TSP-based on the 100 instances
for each of the 25-station and 110-station datasets, using a combination of a light (medium, large,
respectively) truck and extra 5 (10, respectively) bicycles

Q(a0 + #bicycles) 25-station won 110-station won

Greedy emission

15(0+5)

303.65±68.93 83 730.16±108.21 100

TSP-based emission 394.12±78.14 17 1 180.03±213.49 0

Greedy distance 72.28±7.24 93 192.07±20.12 100

TSP-based distance 91.31±11.73 7 292.48±41.24 0

Greedy emission

15(0+10)

355.52±90.61 81 763.26±118.17 99

TSP-based emission 453.38±73.05 19 1 255.51±214.03 1

Greedy distance 71.91±7.55 94 190.68±19.45 99

TSP-based distance 93.09±11.56 6 293.69±39.23 1

Greedy emission

25(10+5)

1 231.78±175.21 82 3 162.01±309.60 100

TSP-based emission 1 501.64±220.49 18 4 835.77±569.09 0

Greedy distance 73.99±8.32 84 194.57±16.52 100

TSP-based distance 87.63±11.87 16 289.05±30.53 0

Greedy emission

25(10+10)

1 245.23±165.22 86 3 199.52±277.91 100

TSP-based emission 1 541.14±225.77 14 4 936.85±623.24 0

Greedy distance 72.46±7.61 90 193.88±14.94 100

TSP-based distance 88.13±11.31 10 290.35±33.19 0

Greedy emission

50(20+5)

2 411.84±333.12 91 6 409.37±588.91 100

TSP-based emission 2 993.68±435.39 9 9 808.92±1382.58 0

Greedy distance 73.33±8.81 89 196.74±16.60 100

TSP-based distance 87.54±11.34 11 287.73±38.43 0

Greedy emission

50(20+10)

2 476.63±356.19 92 6 417.28±614.07 100

TSP-based emission 3 057.94±442.25 8 9 794.56±1386.81 0

Greedy distance 74.01±9.34 88 195.71±16.47 100

TSP-based distance 87.56±12.13 12 285.04±37.42 0

of the depot does not have a significant impact on travel distance, for both Greedy and TSP-

based algorithms. This is perhaps reasonable since the instances are randomly generated so

that there are many service paths having similar distances. One could expect to see that

on average carbon emission increases by an amount equal to the product of the number of

extra bicycles and the travel distance. Nevertheless, for Q = 15, on average carbon emission

increases by only 10% of the expected amount on the 25-station instances, and by only 5%

of the expected amount on the 110-station instances; for Q = 25 and 50, the average carbon

emission increases are similar.

We note that by the design idea in both Greedy and TSP-based algorithms, when

carrying extra bicycles leaving the depot, the service vehicle first tries to drop off bicycles

to the shortage stations, while at the end it needs to keep collecting the surplus bicycles

from overflowing stations and brings them back to the depot. That is, extra bicycles allow

for some extent of freedom at both ends of the service path, but they also incur higher

emission; therefore, it is difficult to argue whether or not it is always helpful. Another

interesting observation is that Greedy consistently performs better than TSP-based, and

even slightly better than in the default setting of no extra bicycles.
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3.4.2 Greedy performs well for delivery TSP

Recall that in the delivery TSP problem each station is associated with +1 or −1,

that is, in our problem this translates to one bicycle in surplus or in shortage. We also

experimented with this case on the 110-station dataset, by dispatching a service vehicle

with a capacity Q ∈ {1, 2, 4, 8}; the vehicle weight is set to 0 since the capacity is lower than

15.

Table 4 contains the collected statistics. Recall that we take the value of the capacity

Q into consideration during dataset simulation, that is, the absolute value of the sum of all

the surpluses and shortages should be no greater than Q. For the 100 instances simulated

with Q = 1, if we deploy a vehicle with capacity Q > 1, then both Greedy and TSP-based

yield the same route as deploying a vehicle with capacity Q = 1; this is not surprising since

both algorithms set the higher priority to drop off the bicycles on the back. We have the

following observations from Table 4:

(1) The service paths by Greedy are much shorter than those by TSP-based (and in

fact about half as long), compared to earlier results on the regularly simulated instances.

On average, the service paths by Greedy are about 15% shorter than their counterparts

in Tables 2 and 3; but the service paths by TSP-based are about 8% longer than their

counterparts in Tables 2 and 3. In this sense, the delivery TSP problem is a quite special

case in our SBR problem.

(2) The carbon emission is about half of the travel distance for both Greedy and TSP-

based algorithms. One might be able to imagine that after the service vehicle picks up a

Table 4 The performance of the two algorithms Greedy and TSP-based on a collection of 100
simulated instances for the 110-station dataset, where the simulated surplus or shortage is limited
to 1 and the vehicle capacity Q ∈ {1, 2, 4, 8} (the weight of the vehicle is 0)

Q 110-station won

Greedy emission

1

83.86±11.63 100

TSP-based emission 149.53±25.99 0

Greedy distance 169.80±21.78 100

TSP-based distance 311.11±46.25 0

Greedy emission

2

82.15±12.62 100

TSP-based emission 154.12±27.63 0

Greedy distance 166.53±24.24 100

TSP-based distance 319.41±50.31 0

Greedy emission

4

85.99±12.44 100

TSP-based emission 155.01±26.10 0

Greedy distance 166.15±21.44 100

TSP-based distance 313.98±42.46 0

Greedy emission

8

101.12±29.84 95

TSP-based emission 176.22±41.87 5

Greedy distance 162.42±20.13 100

TSP-based distance 313.76±48.69 0
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surplus bicycle, it prefers to find a shortage station to drop the bicycle down, as this is

designed into both algorithms; therefore, the expected travel distance without carrying any

bicycle is about half of the total distance.

(3) Greedy outperformed the TSP-based algorithm, winning on all 400 instances in

travel distance, and winning on all 300 instances associated with capacities 1, 2 and 4 and

on 95 out of 100 instances associated with capacity 8 in carbon emission.

We thus may once again safely recommend Greedy over TSP-based in such a special

case.

4 Conclusions

In this paper, we formulated the sharing bicycle relocating practice as a novel opti-

mization problem, which can be regarded as a variant of the classic TSP problem with its

objective function no longer the length of the Hamiltonian tour but the total carbon emis-

sion by the service vehicle. We adopted the affine carbon emission formula and scaled it as

the product of the load of the vehicle and the travel distance, and proposed two heuristic

algorithms Greedy and TSP-based. The priority in both algorithms is to drop off bicycles

to reduce the load of the vehicle, and Greedy seeks for the closest station globally while

TSP-based also seeks for the closest station but guided by an approximate TSP tour. We

designed numerical experiments to validate their performance empirically, showing the set-

tings where each of Greedy and TSP-based outperforms the other to make recommendations

to the sharing bicycle companies for their daily dispatching practice. We also formulated

an integer quadratic program for the re-locating problem, solved it to the optimum inside

CPLEX for small instances, and benchmarked the performances of Greedy and TSP-based

against these optimal solutions.
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