
优先序约束的排序问题:基于最大匹配的近似算法

张安,陈永,陈光亭,陈占文,舒巧君,林国辉

引用本文:

张安,陈永,陈光亭,陈占文,舒巧君,林国辉. 优先序约束的排序问题:基于最大匹配的近似算法[J]. 运筹学学报, 2022,

26(3): 57-74.

ZHANG An,CHEN Yong,CHEN Guangting,CHEN Zhanwen,SHU Qiaojun,LIN Guohui. Maximum matching based

approximation algorithms for precedence constrained scheduling problems[J]. Operations Research

Transactions, 2022, 26(3): 57-74.

相似文章推荐（请使用火狐或IE浏览器查看文章）

Similar articles recommended (Please use Firefox or IE to view the article)

工件具有任意尺寸的混合分批平行机排序问题的近似算法

Approximation algorithm for mixed batch scheduling on identical machines for jobs with arbitrary sizes

运筹学学报. 2022, 26(3): 133-142 https://doi.org/10.15960/j.cnki.issn.1007-6093.2022.03.010

工件有到达时间且拒绝工件总个数受限的单机平行分批排序问题的近似算法

Approximation algorithms for single machine parallel-batch scheduling with release dates subject to the number of rejected jobs not
exceeding a given threshold

运筹学学报. 2020, 24(1): 131-139 https://doi.org/10.15960/j.cnki.issn.1007-6093.2020.01.010

基于退化效应的两台机器流水作业可拒绝排序

Two-machine flow-shop scheduling with deterioration and rejection

运筹学学报. 2017, 21(2): 66-72 https://doi.org/10.15960/j.cnki.issn.1007-6093.2017.02.008

可转包两台流水作业机排序的近似算法

Approximation algorithms for two-machine flow shop scheduling with an outsourcing option

运筹学学报. 2016, 20(4): 109-114 https://doi.org/10.15960/j.cnki.issn.1007-6093.2016.04.013

带有运输且加工具有灵活性的无等待流水作业排序问题

A no-wait flowshop scheduling problem with processing flexibility and transportation

运筹学学报. 2016, 20(4): 93-101 https://doi.org/10.15960/j.cnki.issn.1007-6093.2016.04.011

https://www.ort.shu.edu.cn/CN/10.15960/j.cnki.issn.1007-6093.2022.03.005
https://www.ort.shu.edu.cn/CN/10.15960/j.cnki.issn.1007-6093.2022.03.005
https://www.ort.shu.edu.cn/CN/10.15960/j.cnki.issn.1007-6093.2022.03.005
https://www.ort.shu.edu.cn/CN/10.15960/j.cnki.issn.1007-6093.2022.03.010
https://www.ort.shu.edu.cn/CN/10.15960/j.cnki.issn.1007-6093.2020.01.010
https://www.ort.shu.edu.cn/CN/10.15960/j.cnki.issn.1007-6093.2017.02.008
https://www.ort.shu.edu.cn/CN/10.15960/j.cnki.issn.1007-6093.2016.04.013
https://www.ort.shu.edu.cn/CN/10.15960/j.cnki.issn.1007-6093.2016.04.011

2022 c 9 � $ Ê Æ Æ � 1 26 ò 1 3 Ï

Sep., 2022 Operations Research Transactions Vol.26 No.3

DOI: 10.15960/j.cnki.issn.1007-6093.2022.03.005

Maximum matching based approximation algorithms
for precedence constrained scheduling problems∗

ZHANG An1 CHEN Yong1 CHEN Guangting2

CHEN Zhanwen1 SHU Qiaojun1 LIN Guohui3,†

Abstract We investigate the problem to schedule a set of precedence constrained
jobs of unit size on an open-shop or on a flow-shop to minimize the makespan. The
precedence constraints among the jobs are presented as a directed acyclic graph called
the precedence graph. When the number of machines in the shop is part of the in-
put, both problems are strongly NP-hard on general precedence graphs, but were proven
polynomial-time solvable for some special precedence graphs such as intrees. In this pa-
per, we characterize improved lower bounds on the minimum makespan in terms of the
number of agreeable pairings among certain jobs and propose approximation algorithms
based on a maximum matching among these jobs, so that every agreeable pair of jobs
can be processed on different machines simultaneously. For open-shop with an arbi-
trary precedence graph and for flow-shop with a spine precedence graph, both achieved
approximation ratios are 2− 2

m
, where m is the number of machines in the shop.

Keywords job precedence, open-shop, flow-shop, maximum matching, approxi-
mation algorithm

Chinese Library Classification O221.7

2010 Mathematics Subject Classification 90B35

`kS�å�üS¯KµÄu�����Cq�{∗

Ü S1 � [1 �1Ë2 �Ó©1 Ó|�1 �I�3,†

Á� �©ïÄäk\ógS�å�ü ó�m���Ú6Y��üS¯K§8I¼ê

�4�zó����ó�m"ó��m�\ógS�å'X�±^���¡�`kã�k�

Ã�ã5�x"�Åìê��Ñ\�§üa¯K3��`kãþÑ´r NP-(J�§
3\

ä�`kãþÑ´�)�"·�|^ó��m�N�éê¼�
¯K�#e.§¿ÄuN�

ó��m������OCq�{§Ù¥���N�ó�éþUÓ�3ØÓÅìþ\ó"é

u��`kã�m���¯KÚBÎ.`kã�6Y��¯K§·�3nØþy²
�{�

Cq'� 2− 2
m
§Ù¥ m ´Åìê8"

'�c ó�S§m���§6Y��§����§Cq�{

Received: 2022-01-08
* Funding projects: Zhejiang Provincial Natural Science Foundation (No. LY21A010014), National Nat-

ural Science Foundation of China (No. 11971139)

1. Department of Mathematics, Hangzhou Dianzi University. Zhejiang, Hangzhou 310018, China; É²
>f�E�ÆêÆX, úôÉ² 310018

2. Zhejiang University of Water Resources and Electric Power. Zhejiang, Hangzhou 310018, China; ú
ôY|Y>Æ�, úôÉ² 310018

3. Department of Computing Science, University of Alberta. Edmonton, T6G 2E8 Alberta, Canada;C
�Ë©�ÆO��ÆX, C�Ë©D��î T6G 2E8

† Corresponding author E-mail: guohui@ualberta.ca

58 ZHANG An, CHEN Yong, CHEN Guangting, et al. Vol.26

¥ã©aÒ O221.7

2010 êÆ©aÒ 90B35

Scheduling theory is an important sub-area in Operations Research, where the oper-

ations to be executed are generally referred to as jobs and the facilities execute the oper-

ations are referred to as machines. Besides the inter-relationships between the jobs and

the machines that describe how the jobs should be processed by the machines, there are

intra-relationships among the machines and intra-relationships among the jobs. One class

of job intra-relationships is the precedence, which specifies the constraints that some jobs

have to be finished before some other jobs can be started. Numerous industrial applications

lead to various precedence constrained scheduling problems[1], which have received much

algorithmic study since their emergence.

Graham[2] proposed the precedence constrained multiprocessor scheduling to minimize

the makespan, or P | prec | Cmax in the three-field notation[3], and showed that the list

scheduling (LS) procedure has a worst-case performance ratio of 2 − 1
m , where m is the

number of parallel identical machines.

If the processing time of a job on every machine is one unit, that is, pij = 1 (where i

indexes the machine and j indexes the job, and it simplifies to pj = 1 on parallel identical

machines), then the job is called a unit job. For the precedence constrained multiprocessor

scheduling for unit jobs, denoted as P | prec, pj = 1 | Cmax, Lam and Sethi[4] (and Braschi

and Trystram[5]) refined Graham’s analysis to achieve a slightly improved ratio of 2 − 2
m .

Three decades later, Gangal and Ranade[6] revisited the problem and presented a (2− 7
3m+1)-

approximation algorithm, assumingm > 4. Under the unique game conjecture[7], Svensson[8]

claimed that for P | prec, pj = 1 | Cmax, it is NP-hard to approximate within a constant

factor strictly less than 2. When the number m of parallel identical machines is a fixed

constant greater than or equal to three, the problem is denoted as Pm | prec, pj = 1 | Cmax;

it is the “OPEN8” problem in the original list of Garey and Johnson[9], and it is still

unknown to be NP-hard or not. Schuurman and Woeginger[10] also post an open question

on whether Pm | prec, pj = 1 | Cmax admits a polynomial time approximation scheme

(PTAS), for any fixed m > 3. Recently, a result by Levey and Rothvoss[11] implies that

Pm | prec, pj = 1 | Cmax cannot be APX-hard, assuming NP 6⊆ DTIME(nlog(n)
o(log log n)

).

The above results (the first six rows in Table 1) are for general precedence graphs. One

can imagine and it is true that the computational complexity of the multiprocessor schedul-

ing varies with different precedence graphs, as well as with different objective functions. We

refer the readers to a survey[12] for many variants and known results.

The machines in the multiprocessor scheduling are identical and a job needs to be

processed by only one of them. In an open-shop or a flow-shop of m machines, a job

needs to be processed by all the m machines, in an arbitrary machine order or a fixed

order, respectively. The existing research on the precedence constrained open-/flow-shop

scheduling problems is limited, mostly complexity-oriented, and has not been updated for

a long time (the last eight rows in Table 1). When the number m of machines is part of

the input, it was known that even O | prec, pij = 1 | Cmax and F | prec, pij = 1 | Cmax

No.3 Precedence constrained scheduling problems 59

Table 1 Complexity and approximability results on precedence constrained scheduling

Problem Complexity Approximation

P | prec | Cmax NP-hard[2] 2− 1
m

[2]

P | prec, pj = 1 | Cmax NP-hard to 2-approx[8] 2− 2
m

[4, 5]

P | prec | Cmax, m > 4 NP-hard 2− 7
3m+1

[6]

m > 3 NP-hard open[9]

Pm | prec, pj = 1 | Cmax m > 4 PTAS open[10]

m > 4 Not APX-hard[11]

O | prec, pij = 1 | Cmax Strongly NP-hard[13, 14] 2− 2
m

([19] and this paper)

F | prec, pij = 1 | Cmax Strongly NP-hard[13, 14]

F | spine, pij = 1 | Cmax NP-hard open 2− 2
m

(this paper)

O/F | intree/outtree, pij = 1 | Cmax P[17, 16]

O/F | intree, pij = 1 | Lmax P[15, 16]

O/F | outtree, pij = 1 | Lmax Strongly NP-hard[18, 14]

Om/Fm | prec, pij = 1 | Cmax, m > 3 NP-hard open

O2/F2 | prec, pij = 1 | Lmax P[15, 16]

are already strongly NP-hard on general precedence graphs[13, 14]. When m > 3 is a fixed

constant, the computational complexities of Om | prec, pij = 1 | Cmax and Fm | prec, pij =

1 | Cmax are both open. Nevertheless, when m = 2, for a more general objective to minimize

the maximum lateness Lmax, both O2 | prec, pij = 1 | Lmax and F2 | prec, pij = 1 | Lmax

are polynomial-time solvable, even when the jobs have different release times[15, 16].

Given a precedence graph, by noting that the precedence relation is transitive, we

may remove the “redundant” precedence constraints from the graph, and thus we may

assume without loss of generality that there are no redundant constraints in the given

precedence graph. Then, a constraint in the precedence graph specifies a job is the immediate

predecessor of the other job (or the other way around, the latter job is the immediate

successor of the former). If each job has at most one immediate successor (predecessor,

respectively), then the precedence graph is an intree (outtree, respectively). Bräsel et al.[17]

proved that O | intree/outtree, pij = 1 | Cmax admits a polynomial-time exact algorithm,

that is, the precedence graph is an intree or an outtree; the same conclusion holds for flow-

shop counterpart[16]. Interestingly, both O | intree, pij = 1 | Lmax and F | intree, pij =

1 | Lmax are polynomial-time solvable[15, 16], while both O | outtree, pij = 1 | Lmax and

F | outtree, pij = 1 | Lmax are strongly NP-hard[18, 14].

In this paper, we study the two problems O | prec, pij = 1 | Cmax and F | prec, pij =

1 | Cmax from the approximation algorithm perspective, and we assume the input m > 3

given that O2 | prec, pij = 1 | Lmax and F2 | prec, pij = 1 | Lmax are polynomial-time

solvable[15, 16]. In the literature, few approximation algorithm exists except the most recently

60 ZHANG An, CHEN Yong, CHEN Guangting, et al. Vol.26

proposed (2− 2
m)-approximation algorithm for O | prec, pij = 1 | Cmax by Chen et al.[19]. We

observe the special jobs on the spine of the precedence graph, characterize improved lower

bounds on the minimum makespan in terms of the number of agreeable pairings among

certain jobs, and propose approximation algorithms based on a maximum matching among

these jobs, so that every agreeable pair of jobs can be processed on different machines

simultaneously.

In the next section we introduce definitions and the preprocessing of the precedence

graph to partition the jobs into layers, and construct the so-called spine of the graph[19]. In

Section 3 we deal with open-shop scheduling, present a maximum matching scheme between

the singletons, which are on the spine, and the jobs outside of the spine, and show that the

resulting approximation algorithm has the same performance ratio of (2− 2
m) as the one in

[19] (the seventh row in Table 1). Flow-shop scheduling is dealt with in Section 4, where we

present a maximum matching scheme between agreeable jobs in adjacent layers, and show

that it leads to a (2− 2
m)-approximation algorithm when all the jobs are on the spine (the

ninth row in Table 1). For both algorithms, the ratio 2 − 2
m is shown tight. We conclude

the paper in Section 5.

1 Definitions and Preliminaries

We use V = {1, 2, · · · , n} to denote the set of unit-jobs and G = (V,E) to denote the

directed precedence graph, in which a directed edge (j1, j2) ∈ E states the constraint that

the job j1 precedes the other job j2, that is, processing j2 can be started only if j1 has

been processed by all the machines (i.e., completed). In the sequel, the word directed is

often dropped. Note that the precedence relation is transitive, that is, j1 precedes j2 and

j2 precedes j3 imply that j1 precedes j3, and in this case we call (j1, j3) ∈ E a redundant

precedence constraint in E. The precedence graph G = (V,E) is a directed acyclic graph

and E is assumed containing no redundant constraints (or otherwise we may remove all of

them from E, in O(n2) time).

If j1 precedes j2, then we call j1 a predecessor of j2 and j2 a successor of j1; additionally,

if (j1, j2) ∈ E, then j1 is an immediate predecessor of j2 and j2 is an immediate successor

of j1. In the sequel, a job might also be referred to as a vertex in the precedence graph, and

we use vertex and job interchangeably.

If neither j1 precedes j2 nor j2 precedes j1, then they are called agreeable with each

other and they can be processed by different machines simultaneously. A set X of jobs is

called agreeable if every pair of jobs in X are agreeable; if X ∪{j} is agreeable, then we say

that the job j is agreeable with X. For two agreeable sets X1 and X2, if there exists a job

ji ∈ Xi, i = 1, 2 such that j1 precedes j2, then we say that X1 precedes X2; additionally, if

every job in X1 precedes all the jobs in X2, then X1 fully precedes X2. We remark that two

agreeable sets might precede each other, but they cannot fully precede each other. Below

we construct a sequence of agreeable sets so that one precedes the next set, but not its

preceding set.

No.3 Precedence constrained scheduling problems 61

The following preprocessing of the precedence graph to partition the jobs into agreeable

layers is presented in [19]. Given the precedence graph G = (V,E), the first layer, denoted

as L1, of jobs are those without any immediate predecessors (that is, without any inedges),

and they are subsequently removed from the precedence graph for further partitioning;

iteratively, if the remaining precedence graph is non-empty, then the next layer of jobs

are those without any immediate predecessors, and they are subsequently removed from

further partitioning. The thus determined layers form into the layered representation L =

{L1, L2, · · · , L`}, assuming there are in total ` layers. Note that L can be constructed in

O(n2) time, and each layer Li is non-empty and agreeable. For convenience, a job of Li is

also called a level-i job; by the construction process, we conclude that each level-i job has

an immediate predecessor in Li−1, for i > 2, and that Li precedes Lj but not the other way

around for any pair i < j. We remark that Li does not necessarily fully precede Lj .

One sees that a longest (directed, omitted in the sequel) path in the precedence graph

G = (V,E) contains exactly ` vertices, among which a vertex precedes all the other vertices

with larger level indices. This fact implies a lower bound of m` time units on the makespan.

Let C∗OS and C∗FS denote the minimum makespan for the problems O | prec, pij = 1 | Cmax

and F | prec, pij = 1 | Cmax, respectively, in which there are m machines, n jobs, and there

are ` layers in the precedence graph G = (V,E). Then,

C∗OS > max{n,m`}, C∗FS > max{n+m− 1,m`}. (1)

Using the layered representation L, we can schedule in O(n+m) time the jobs level by

level where the jobs of each layer Li are processed in the same order on the m machines and

finished in |Li|+m− 1 time units, in either of the open-shop and the flow-shop. It follows

that the achieved makespan is
∑`

i=1(|Li| + m − 1) = n + (m − 1)`. Combining with the

lower bounds in Eq. (1), we have the following theorem.

Theorem 1 The layered representation L of the precedence graph G = (V,E) leads to

an O(n2+m)-time (2− 1
m)-approximation algorithm for the problems O | prec, pij = 1 | Cmax

and F | prec, pij = 1 | Cmax, respectively, where m > 3 is the number of machines in the

shop and n is the number of jobs.

Let U be the set of all the vertices that are on the longest paths in the precedence graph

G = (V,E). The set U can be determined as follows: First, let U` = L`, that is, the set of

level-` jobs; then let U`−1 be the set of immediate predecessors of the jobs of U` that are in

L`−1. We remark that U`−1 is non-empty, and some immediate predecessors of the jobs of

U` might not be in L`−1. Iteratively, let Ui be the set of immediate predecessors of the jobs

of Ui+1 that are in Li, for i = ` − 2, ` − 3, · · · , 1; and lastly U = U1 ∪ U2 ∪ · · · ∪ U`. The

subgraph induced on U , G[U] = (U,F), is defined as the spine[19] of the precedence graph

G = (V,E).

If |Ui| = 1 for some i, then the unique job of Ui is called a singleton and Ui is called

a singleton subset. Let U1 denote the collection of all the singleton subsets. Note that

Ui ⊆ Li. Let Ri = Li \Ui for each i, and R = R1 ∪R2 ∪ · · · ∪R`−1; for convenience, a job in

62 ZHANG An, CHEN Yong, CHEN Guangting, et al. Vol.26

R (Ri, U , Ui, respectively) is called an R-job (Ri-, U -, Ui-job, respectively). If R = ∅, then

the precedence graph G = (V,E) is called a spine graph. For example, a single path, which

is referred to as a chain[20] in the literature, is a spine graph. An intree or an outtree is not

necessarily a spine graph, unless all its root-to-leaf or leaf-to-root paths, respectively, have

the same length. Let F | spine, pij = 1 | Cmax denote the problem when the precedence

graph is a spine graph.

2 A matching-based approximation for O | prec, pij = 1 | Cmax

Consider an instance of O | prec, pij = 1 | Cmax, in which the precedence graph G =

(V,E) comes with its layered representation L = {L1, L2, · · · , L`}, the spine G[U] = (U,F),

and the collection U1 of the singleton subsets. For each singleton subset Ui ∈ U1, let ui

denote the unique Ui-job, and let U1 denote the set of these singleton jobs.

In the sequel, the first number in the subscript of a job/vertex refers to the level of the

job/vertex. For example, r41 is a job/vertex of R4.

In the first step of the approximation algorithm Approx 1 (of which a high-level

description of the algorithm Approx 1 is depicted in Fig. 2), an auxiliary (undirected)

bipartite graph H = (U1, R,E1) is constructed. The vertices in one part are the singleton

jobs and the vertices in the other part are the R-jobs. In the bipartite graph H, a singleton

job ui ∈ U1 is adjacent to all agreeable jobs in R1 ∪R2 ∪ · · · ∪Ri, which include all the jobs

of Ri in particular (see Fig. 1 for an illustration, where E1 consists of all the seven dashed

edges).

U7

u6

u5

u3

U1

u5

u6

r41

r42

r2

r5

u3

U1 R

Fig. 1 A precedence graph G = (V,E) and its spine G[U] (left), where the unfilled vertices form
into U and the four filled vertices form into R; U1 = {u3, u5, u6} and the auxiliary bipartite graph

H = (U1, R,E1) (right), in which the gray directed edges are precedence and the dashed
undirected edges are in E1. A matching in H, M = {(u5, r2), (u6, r41)} with its two edges

highlighted, becomes {(u5, r5), (u6, r41)} after the upgrading process, since r5 is a successor

of r2; and further becomes {(u5, r41), (u6, r5)} after the de-crossing process, which is

non-upgradeable and non-crossing

The following lemma summarizes some structural properties of the bipartite graph H.

Lemma 1 In H = (U1, R,E1), if a singleton job ui is adjacent to a job r ∈ Ri′ such

that i′ < i, then

No.3 Precedence constrained scheduling problems 63

(1) ui is adjacent to every job r′ ∈ Ri′′ such that r precedes r′ and i′ < i′′ < i;

(2) every other singleton ui′′ with i′ < i′′ < i is adjacent to r.

Proof The proof is done by contradiction and the transitivity of the precedence

relation.

Note that the singleton job ui is agreeable with the job r. If ui is not agreeable with

the job r′, then we know from i′′ < i that r′ precedes ui; it follows from the transitivity

that r precedes ui, a contradiction. This proves the first item, and the second item can be

proven in the same way. �

For the example illustrated in Figure 1, where (u6, r41) ∈ E1, r5 is a successor of r41

and u5 is a singleton, by Item (1) of Lemma 1 we have (u6, r5) ∈ E1 and by Item (2) of

Lemma 1 we have (u5, r41) ∈ E1 too.

Given a matching in the bipartite graph H = (U1, R,E1), which is a subset of edges

that are non-adjacent to each other, and an edge (ui, r) in the matching, we say that the

singleton job ui and the R-job r are covered by (the edge in) the matching. If there is an

R-successor r′ of r which has a level i′ 6 i and is not covered by any other edge in the

matching, then either since they are at the same level or by Lemma 1 we know that (ui, r
′)

is in E1 and thus we can use (ui, r
′) to replace the edge (ui, r). For example in Figure 1, a

matching M = {(u5, r2), (u6, r41)} and r5 is a successor of r2, then the edge (u5, r2) can be

replaced by (u5, r5). We refer this process of increasing the levels of the covered R-jobs until

impossible to as upgrading. The resultant matching is said non-upgradeable. The following

lemma shows that the upgrading process can be executed in O(|M ||R|) time.

Lemma 2 In H = (U1, R,E1), every matching M can be converted into another

non-upgradeable matching of the same size in O(|M ||R|) time.

Proof Let (ui, r) be an edge in the matching M and r′ be an R-successor of r which

has a level i′ 6 i and is not covered by M . Moreover, the edge (ui, r) is selected so that the

level index i is the maximum, and subsequently so that level index i′ achieves the maximum.

Lemma 1 states that (ui, r
′) is also an edge in E1. Therefore, the edge (ui, r) of the matching

M can be replaced by (ui, r
′), while releasing r of level strictly less than i to be uncovered.

The selection of (ui, r) and r′ guarantees that the new edge (ui, r
′) of the matching M will

not be upgraded afterwards.

Note that for each singleton job ui covered by the matching M , finding a corresponding

R-job r′ for upgrading takes O(|R|) time. It follows that the overall upgrading time is

O(|M ||R|). �

Given a matching in the bipartite graph H = (U1, R,E1) and two edges (ui, r) and

(ui′ , r
′) with i′ < i (implying ui′ precedes ui), if r precedes r′, then the two edges are called

crossing each other. Lemma 1 states that in this case both (ui, r
′) and (ui′ , r) are also

edges in E1. Therefore, the two crossing edges can be replaced by the two non-crossing

edges (ui, r
′) and (ui′ , r), a process referred to as de-crossing. For example in Figure 1,

a matching M = {(u5, r5), (u6, r41)} and its two edges are crossing, then the de-crossing

process replaces these two edges by (u5, r41) and (u6, r5). A matching not containing any

crossing edges is said non-crossing.

64 ZHANG An, CHEN Yong, CHEN Guangting, et al. Vol.26

Lemma 3 In H = (U1, R,E1), every matching M can be converted into another

non-upgradeable and non-crossing matching of the same size in O(|M ||R|) time.

Proof Given a matching M , by Lemma 2, we first execute the upgrading process in

O(|M ||R|) time; the achieved non-upgradeable matching is still denoted as M .

When there are two crossing edges (ui, r) and (ui′ , r
′) with i′ < i in the matching M ,

they are replaced by the corresponding two non-crossing edges (ui, r
′) and (ui′ , r). A simple

contradiction can be deployed to prove that the resultant matching is still not upgradeable.

It follows that we can execute the de-crossing process to sequentially ensure that the edge of

the matching M incident at the singleton job ui with the current largest level index i is not

crossing with any other edges of M ; and consequently the de-crossing process is executed in

O(|M |2) time.

From |M | 6 |R|, the overall time for upgrading, followed by de-crossing, is thus

O(|M ||R|). �

Lemma 4 A non-upgradeable and non-crossing matching M in H = (U1, R,E1)

gives rise to a partition of the jobs into a sequence of ` agreeable subsets, among which there

are exactly |U1| − |M | singleton subsets. Furthermore, processing the jobs subset-by-subset

sequentially gives rise to a feasible schedule of makespan no greater than n + (m − 2)` +

(|U1| − |M |).

Proof Let R′ denote the set of R-jobs not covered by M . For each i such that Ui is

not a singleton subset or the singleton ui is not covered by M , let L′i = (Ri∩R′)∪Ui, which

is the subset of all the un-covered jobs in Li. For each singleton job ui covered by an edge

(ui, r) in M , let L′i = (Ri ∩R′) ∪ {ui, r} (that is, the subset of all the un-covered jobs in Li

plus the two covered jobs ui and r).

One sees that each L′i is non-empty and agreeable, and L′i precedes L′i+1 for every

i 6 `− 1.

Next we want to prove that if i > j then L′i does not precede L′j . When Ui is not

a singleton subset or the singleton ui is not covered by M , L′i does not precede L′j since

L′j ⊆ L1 ∪ L2 ∪ · · · ∪ Lj while L′i ⊆ Li.

When Ui is a singleton subset and ui is covered by an edge (ui, r) ∈M , but Uj is not a

singleton subset or the singleton uj is not covered by M , L′i precedes L′j only if r precedes

a job of L′j ⊆ Lj . However, if r precedes a job of Uj then r precedes ui, a contradiction; if r

precedes an R-job of L′j \ Uj then the matching M can be upgraded, again a contradiction.

When both Ui and Uj are singleton subsets and, ui is covered by an edge (ui, r) ∈ M
and uj is covered by an edge (uj , r

′) ∈ M , L′i precedes L′j only if r precedes r′. However,

this suggests the two edges (ui, r) and (uj , r
′) are crossing, a contradiction. This finishes

the proof that L′i does not precede L′j for any i > j.

Let L′ = {L′1, L′2, · · · , L′`}, which is a layered representation similar to L, and the

jobs can be processed layer-by-layer where the jobs of each layer L′i are processed in the

permuted (i.e., cyclic) order on the m machines in max{|L′i|,m} time units. It follows that

we achieve a feasible schedule in which for processing the jobs of L′i, each machine idles

exactly max{0,m− |L′i|} time units. Since we have |U1| singleton jobs and |M | of them are

No.3 Precedence constrained scheduling problems 65

covered by the matching M , the number of layers of L′ each contains only one job is at most

|U1| − |M |. Therefore, the makespan of the achieved schedule is

Cmax 6 n+ (m− 2)`+ (|U1| − |M |). (2)

This finishes the proof of the lemma. We remark that from the given matching M , con-

structing the feasible schedule takes O(n+m) time. �

The above analysis motivates the following second step of the algorithm Approx 1,

in which a maximum (cardinality) matching M∗ in the bipartite graph H = (U1, R,E1) is

computed in O(n1.5`)[21, 22] (or Õ(|E1|10/7[23]) time; and then from M∗ a feasible schedule

π is constructed using Lemmas 2, 3 and 4 in O(n` + m) time. A high-level description of

the complete algorithm Approx 1 is depicted in Fig. 2.

Algorithm Approx 1:

0. Initialization: Preprocess the precedence graph G = (V,E) for

0.1 the layered representation L = {L1, L2, · · · , L`},
0.2 the spine G[U] = (U,F), R = V \ U , and

0.3 the set U1 of singleton jobs in the spine;

1. Construct the auxiliary (undirected) bipartite graph H = (U1, R,E1);

2. Compute a maximum matching M∗ in H, then

2.1 upgrade M∗;

2.2 de-crossing M∗;

2.3 construct the layered representation L′ = {L′1, L′2, · · · , L′`};
2.4 construct a feasible schedule π.

Fig. 2 A high-level description of the algorithm Approx 1

We have showed the makespan of the schedule achieved by the algorithm Approx 1 in

Eq. (2). For the approximation ratio, we will prove next an improved lower bound on the

minimum makespan using the number |U1| of singletons, in Eq. (3).

Consider an optimal schedule π∗ that achieves the minimum makespan C∗OS , in which

we assume without loss of generality that every job is processed at an integral time point

for one time unit. The entire time span [0, C∗OS] for the first machine in the open-shop is

partitioned into C∗OS unit time intervals. During each unit time interval, if one of the other

m − 1 machines processes a singleton job ui, then this unit time interval is said associated

to ui. One sees that each singleton job is associated with exactly m − 1 distinct unit time

intervals, while a unit time interval can be associated to at most one singleton job (since

singleton jobs cannot be processed simultaneously).

Assume the unit time interval [j, j+1], for some j, is associated to the singleton job ui.

If the first machine processes a job r during this time interval [j, j + 1], then r is an R-job

agreeable with ui. In the bipartite graph H = (U1, R,E1) we construct a subset M ⊆ E1

of edges as follows: If the job r has a level index no greater than i, then the edge (ui, r)

is selected into M ; otherwise, we conclude that r has a level-i predecessor r′ ∈ Ri which is

66 ZHANG An, CHEN Yong, CHEN Guangting, et al. Vol.26

agreeable with ui, and then the edge (ui, r
′) is selected into M . Afterwards, no more edge

incident at ui will be selected, even if the first machine processes another job during some

other unit time interval associated to ui.

Lemma 5 Given an optimal schedule π∗, the constructed edge subset M is a matching

in the bipartite graph H = (U1, R,E1), and the makespan of π∗ is at least n+(|U1|−|M |)(m−
1).

Proof In the constructed edge subset M , every singleton job is covered by at most

one edge; therefore, if M is not a matching, then there exist two distinct singleton jobs

denoted as ui and ui′ with i < i′ such that both (ui, r) and (ui′ , r) are in M for some Ri′′-

job r with i′′ 6 i. By the edge selecting rule, we conclude that i′′ = i since otherwise ui and

ui′ would be processed by different machines simultaneously with the job r. Furthermore,

in the optimal schedule π∗, ui′ and r are processed by different machines simultaneously

during some unit time interval [j′, j′ + 1], while ui and a successor r′ of r are processed by

different machines simultaneously during another unit time interval [j, j + 1]. However, the

two constraints that ui precedes ui′ and r precedes r′ state clearly that j < j′ and j′ < j,

a contradiction. That is, every R-job is covered by at most one edge of M too. This proves

that M is a matching in the bipartite graph H = (U1, R,E1).

If a singleton job ui is not covered by any edge of M , then when ui is processed on any

machine except the first machine, the first machine idles during that particular unit time

interval. Therefore, the first machine idles in total m− 1 time units associated with ui, and

consequently the first machine idles in total at least (|U1| − |M |)(m − 1) time units. That

is, the makespan

C∗OS > n+ (|U1| − |M |)(m− 1). (3)

This finishes the proof of the lemma. �

Theorem 2 The matching based algorithm Approx 1 is an O(max{n2,min{n1.5`,
n10/7`10/7}} + m)-time (2 − 2

m)-approximation for the problem O | prec, pij = 1 | Cmax,

where m > 2 is the number of machines in the open-shop, and the approximation ratio is

tight.

Proof Recall that in the second step of the algorithm Approx 1, a maximum match-

ing M∗ in the bipartite graph H = (U1, R,E1) is computed in O(n1.5`) (or Õ(n10/7`10/7))

time, and from M∗ a feasible schedule π is constructed in O(n` + m) time which has a

makespan Cmax 6 n + (m − 2)` + (|U1| − |M∗|). Using the lower bounds of the minimum

makespan in Eqs. (1) and (3), we have

Cmax 6 C
∗
OS + (m− 2)` 6 C∗OS +

m− 2

m
C∗OS =

(
2− 2

m

)
C∗OS .

That is, Approx 1 is a (2 − 2
m)-approximation algorithm for the problem O | prec, pij =

1 | Cmax.

From the high-level description of the algorithm Approx 1 in Figure 2, we see that

the initialization and the construction of the bipartite graph H take O(n2) time. Therefore,

No.3 Precedence constrained scheduling problems 67

the overall running time of Approx 1 is O(max{n2,min{n1.5`, n10/7`10/7}}+m).

Consider an instance precedence graph G = (V,E) for which there are ` levels of jobs,

every job in the spine is a singleton job, the first level L1 contains the job u1 and (m− 1)`

R1-jobs, and n = m`. For this instance, the constructed bipartite graph H = (U1, R,E1) is

complete, a maximum matching M∗ contains exactly ` edges, from which the constructed

feasible schedule π has its makespan Cmax = n+ (m−2)(`−1). On the other hand, one can

associate m − 1 distinct R1-jobs to each singleton job, resulting in a schedule of makespan

m` = n (and thus optimal). Therefore, the performance ratio of Approx 1 on this instance

is
m`+ (m− 2)(`− 1)

m`
= 2− 2

m
− m− 2

m`
−→ 2− 2

m
,

when ` (or equivalently, n = m`) approaches +∞. This shows the tightness of the approxi-

mation ratio 2− 2
m . �

3 A matching-based approximation for F | spine, pij = 1 | Cmax

The flow-shop scheduling to minimize the makespan is one of the classic scheduling

models [9,SS15]. A schedule in which the job processing order is the same across all the

machines is called a permutation schedule. It is known that when the number m of machines

is two or three, the flow-shop scheduling problem without precedence constraints, that is,

Fm || Cmax, admits an optimal schedule that is permutation, but not necessarily when m >

4[24] or when m is part of the input. Nevertheless, for unit-jobs and an arbitrary precedence

graph, one can prove by a simple induction on the number n of jobs that the general problem

F | prec, pij = 1 | Cmax admits an optimal schedule that is permutation and no-wait, by

“no-wait” every job is processed sequentially through the m machines continuously (i.e.,

from one machine to another without waiting for the machines to become available) and

completed in exactly m time units. One thus sees that in such a permutation and no-wait

schedule, how the jobs are processed on the m machines are identical, except that the first

machine starts at time 0, the second machine starts at time 1, and the i-th machine starts

at time i− 1 for i = 3, 4, · · · ,m. Also, if one job j1 precedes the other job j2, then on each

machine j2 starts processing at least m − 1 time units after j1 is finished by the machine.

We summarize these into the following lemma.

Lemma 6 The problem F | prec, pij = 1 | Cmax admits an optimal schedule that is

permutation and no-wait, in which how the jobs are processed on the machines are identical,

except that the i-th machine starts processing jobs at time i − 1, and if one job precedes

another, then on each machine their start processing times are at least m time units apart.

In the sequel we consider only permutation and no-wait schedules, and the precedence

graph G = (V,E) is a spine graph (that is, R = ∅). We note that the complexity of the

problem F | spine, pij = 1 | Cmax is unknown, but it seems to be NP-hard. Consider an

instance of F | spine, pij = 1 | Cmax, in which the precedence graph G = (V,E) comes

with its layered representation L = {L1, L2, · · · , L`}. Since G is a spine graph, Ui = Li

68 ZHANG An, CHEN Yong, CHEN Guangting, et al. Vol.26

for each i. One important fact about a spine graph is that every job of Ui has a successor

in each Ui′ where i′ > i, and the other way around every job of Ui′ has a predecessor in

Ui. Consequently, if there is an index i 6 ` − 1 such that Ui fully precedes Ui+1, then all

the jobs of U1 ∪ U2 ∪ · · · ∪ Ui are predecessors of every job of Ui+1 ∪ Ui+2 ∪ · · · ∪ U`. One

thus sees that the instance can be decomposed into two independent sub-instances with the

precedence graphs G[U1 ∪U2 ∪ · · · ∪Ui] and G[Ui+1 ∪Ui+2 ∪ · · · ∪U`], respectively, followed

by concatenating their solution schedules into a schedule for the original instance. For this

reason, we may assume without loss of generality that no Ui fully precedes Ui+1, which

implies no singleton subset among the Ui’s.

In the first step of the approximation algorithm Approx 2 (of which a high-level

description is depicted in Fig. 4), an auxiliary undirected graph G = (V,E) is constructed.

We use the notation G for the reason that this auxiliary graph is a part of the complement

of G: For every i = 1, 2, · · · , ` − 1, between Ui and Ui+1, if a job j1 ∈ Ui does not precede

a job j2 ∈ Ui+1, then j1 and j2 are adjacent in G, that is, the undirected edge (j1, j2) ∈ E
indicates that j1 and j2 are agreeable so that they can be processed simultaneously. We use

E(Ui, Ui+1) to denote the subset of edges between Ui and Ui+1, which is non-complete and

non-empty by our assumption (see Figure 3 for an illustration).

U7
U7

U4

U3

U2

U1

U4

U3

U2

U1

Fig. 3 A spine precedence graph G = (V,E) (left), in which no Ui fully precedes Ui+1 for any i;

the auxiliary graph G = (V,E) (right), in which the edges are dashed. A lexicographically largest

matching in G is highlighted with its binary vector (1, 1, 0, 1, 1, 1), which contains no edge from

E(U3, U4)

A matching in G is called an agreement matching if it contains at most one edge from

each E(Ui, Ui+1). In the sequel we consider only agreement matchings in G and drop the

word “agreement”. Given a matching M , let δMi = |M ∩ E(Ui, Ui+1)|, which is binary

indicating whether or not the matching contains an edge from E(Ui, Ui+1). This way, by

ignoring the detailed edges, M can be represented as an (` − 1)-dimensional binary vector

vM = (δM1 , δM2 , · · · , δM`−1); furthermore, induced by the lexicographical precedence 0 ≺ 1, M

is said lexicographically larger than another matching M ′ if the vector vM associated with

M is lexicographically larger than the vector vM
′

associated with M ′ (e.g., (1, 1, 0, 1, 1, 1) is

lexicographically larger than (1, 0, 1, 1, 1, 1)). Let M∗ be a lexicographically largest match-

No.3 Precedence constrained scheduling problems 69

ing. By our assumption that E(Ui, Ui+1) 6= ∅ for every i 6 `− 1, one sees that there are no

adjacent 0’s in the vector vM
∗
.

Lemma 7 A lexicographically largest matching is a maximum matching in the graph

G = (V,E).

Proof By contradiction, we assume M∗ is a lexicographically largest matching, M is

a maximum matching in the graph G = (V,E) such that it is the lexicographically largest

among all maximum matchings, and that vM
∗
> vM . It follows that there is a level index k 6

`− 1 such that δM
∗

i = δMi for all i = 1, 2, · · · , k− 1 while 1 = δM
∗

k > δMk = 0. One then sees

that the edges determined by the new vector (δM
∗

1 , δM
∗

2 , · · · , δM∗k , 0, δMk+2, δ
M
k+3, · · · , δM`−1)

form into a matching of size at least |M | and lexicographically larger than M , a contradiction

to the selection of M . �

Lemma 8 A lexicographically largest matching in the graph G = (V,E) can be com-

puted in O(n2) time.

Proof Given an edge (j1, j2) of E(U1, U2), an edge of E(U2, U3) that can co-exist with

(j1, j2) in a matching has the form (j′2, j3) with j′2 6= j2; and we may interpret this discovery

process as graph directed traversal from the edge (j1, j2), along the artificial edge (j2, j
′
2),

to the edge (j′2, j3). It follows that discovering the longest prefix of all 1’s for the binary

vector vM
∗

associated with a lexicographically largest matching M∗ is equivalent to finding

the longest path starting with an edge of E(U1, U2) by the graph directed traversal, which

takes O(n2) time. Assuming the length of this prefix is k, then δM
∗

k+1 = 0 and we continue

to discover the second longest chunk of all 1’s for the binary vector vM
∗
, by finding the

longest path starting with an edge of E(Uk+2, Uk+3) through the graph directed traversal.

Since the edges explored during the second graph directed traversal do not overlap with

those explored during the first traversal, we conclude that the total time for computing the

lexicographically largest matching M∗ is O(n2), where n = |V |. �

Lemma 9 A lexicographically largest matching M∗ in the graph G = (V,E) gives a

job processing order for each layer of L = {U1, U2, · · · , U`}, which together, in O(n + m)

time, form a feasible schedule of makespan no greater than n+ (m− 1)`− |M∗|.

Proof Recall that we are constructing a permutation and no-wait schedule. Using

the layer representation L = {U1, U2, · · · , U`}, we decide a processing sequence for the jobs

of each layer according to the lexicographically largest matching M∗. The key idea is: For

an edge (j1, j2) of M∗∩E(Ui, Ui+1), we put the job j1 as the last in the processing sequence

for Ui and put the job j2 as the first in the processing sequence for Ui+1. The other jobs

of each layer, if any, are arbitrarily ordered in between the decided the first and the last

jobs. For the edge (j1, j2) of M∗∩E(Ui, Ui+1), since j1 and j2 are agreeable, and we process

j2 on the first machine during the same time processing j1 on the last machine. That is,

the sub-schedules for Ui and Ui+1 overlap exactly one time unit. On the other hand, if

M∗ ∩ E(Ui, Ui+1) = ∅, then the jobs of Ui+1 are started processing after all the jobs of

Ui are finished, that is, the two sub-schedules do not overlap. Therefore, an edge of M∗

essentially “saves” one time unit for the last machine in the flow-shop, and the schedule is

70 ZHANG An, CHEN Yong, CHEN Guangting, et al. Vol.26

constructed in O(n+m) time.

Since the time-span for processing the jobs of the layer Ui is |Ui|+m−1, the makespan

of the constructed schedule π using M∗ is thus

Cmax =
∑̀
i=1

(|Ui|+m− 1)− |M∗| = n+ (m− 1)`− |M∗|. (4)

This finishes the proof of the lemma. �

The above analysis motivates the second step of the algorithm Approx 2, which is

to compute a lexicographically largest matching M∗ in the graph G = (V,E), and then to

construct a feasible permutation and no-wait schedule. From Lemmas 8 and 9, this second

step takes O(n2 +m) time. A high-level description of the algorithm Approx 2 is depicted

in Fig. 4.

Algorithm Approx 2:

0. Initialization: Preprocess the spine precedence graph G = (V,E) for

0.1 the layered representation L = {U1, U2, · · · , U`};
0.2 assume no Ui fully precedes Ui+1, or otherwise decompose the instance;

1. Construct the auxiliary graph G = (V,E);

2. Compute a lexicographically largest matching M∗ in G, then

2.1 construct a permutation and no-wait feasible schedule π.

Fig. 4 A high-level description of the algorithm Approx 2

We have showed the makespan of the schedule achieved by the algorithm Approx 2 in

Eq. (4). For the approximation ratio, we will prove next an improved lower bound on the

minimum makespan using the matching M∗ in Eq. (5).

Recall that there are no adjacent 0’s in the binary vector vM
∗

associated with the

lexicographically largest matching M∗, by the assumption that no Ui fully precedes Ui+1 for

any i 6 `− 1. We next show that a 0-entry in the vector vM
∗

also implies some interesting

local structure in the graph G = (V,E), similar to the fully precedence.

Lemma 10 Let M∗ be a lexicographically largest matching in the graph G = (V,E)

and δM
∗

i = 0. Then all the edges of E(Ui, Ui+1) are incident at a common vertex ci ∈ Ui

(that is, Ui \ {ci} fully precedes Ui+1), and ci is covered by an edge of M∗.

Proof From M∗ being a lexicographically largest matching and δM
∗

i = 0, we conclude

that i > 1. The proof is then done by contradiction, where one sees that if there are edges

of E(Ui, Ui+1) incident at two distinct vertices of Ui, or if ci is not covered by an edge of

M∗, then one edge of E(Ui, Ui+1) can be added to M∗ (by possibly removing the edge of

M∗ ∩E(Ui+1, Ui+2) from M∗), suggesting M∗ wouldn’t be the lexicographically largest. �

Let M∗ be a lexicographically largest matching in the graph G = (V,E) and δM
∗

i = 0.

Lemma 10 states the existence of a vertex ci ∈ Ui such that Ui \ {ci} fully precedes Ui+1.

We next consider an optimal permutation and no-wait schedule π∗, and let bi be the last

No.3 Precedence constrained scheduling problems 71

processed job among those of Ui \ {ci} and ai+1 be the first processed job among those of

Ui+1 in π∗. Since bi precedes ai+1, their start processing times on the last machine are at

least m time units apart (Lemma 6), and we denote the time interval on the last machine

from bi being finished to ai+1 being started as Ii. By transitivity of the precedence relation,

Ui \ {ci} fully precedes each of Ui+1, Ui+2, · · · , U`, and thus no job of Ui+1 ∪Ui+2 ∪ · · · ∪U`

will be processed inside Ii, suggesting the defined intervals Ii’s for 0-entries in the vector

vM
∗

are non-overlapping.

Lemma 11 In the optimal schedule π∗, the last machine idles for at least m−2 time

units inside the time interval Ii, where m > 3 is the number of machines in the flow-shop.

Proof We assume to the contrary that the last machine idles for z time units inside

the time interval Ii, with z 6 m − 3. Recall that π∗ is permutation and no-wait. We first

claim that the |Ii|−z jobs processed inside the time interval Ii all precede ci and agree with

Ui \ {ci}. Note that |Ii| − z > (m− 1)− (m− 3) = 2.

To prove the claim, first from bi being the last processed job among those of Ui \ {ci},
no predecessor of any job of Ui \ {ci} can be processed inside Ii. That is, these |Ii| − z jobs

are agreeable with Ui \ {ci}, and thus can be either ci or predecessors of ci. If ci is among

them, then ci would be agreeable with at least m− 2− z other jobs of them, a contradiction

to their precedence relationship. Therefore, all these |Ii| − z jobs precede ci (and, each is

agreeable with at least m− 2− z others).

Recall the important fact about a spine graph is that every job of Ui has a predecessor

in Ui′ , for any i′ < i, and the other way around that every job of Ui′ has a successor in Ui.

Given that |Ii| − z > 2, we conclude there is an index i′ < i such that Ui′ contains two jobs

that are agreeable with Ui \ {ci}. Denote these two jobs as c1i′ and c2i′ . We further assume i′

is the largest such index, that is, for every i′′ > i′, Ui′ contains only one job, denoted as ci′′ ,

that is agreeable with Ui\{ci}. One sees that ci′′ precedes ci′′+1 for i′′ = i′+1, i′+2, · · · , i−1,

and both c1i′ and c2i′ precede ci′+1.

On the other hand, let bi′′ be a job of Ui′′ preceding bi′′+1, for i′′ = i′+1, i′+2, · · · , i−1.

By the transitivity of the precedence relation, ci′′ is agreeable with bi′′+1, for i′′ = i′ +

1, i′ + 2, · · · , i − 1, and both c1i′ and c2i′ are agreeable with bi′+1. That is, (ci′′ , bi′′+1) ∈
E(Ui′′ , Ui′′+1), for i′′ = i′ + 1, i′ + 2, · · · , i− 1, and (c1i′ , bi′+1), (c2i′ , bi′+1) ∈ E(Ui′ , Ui′+1).

Let k be the largest index among {i′, i′ + 1, · · · , i − 1} such that ck is not covered by

an edge of M∗, where ci′ refers to either c1i′ or c2i′ . Due to the two jobs c1i′ and c2i′ , k is well

defined. We then for every i′′ = k, k + 1, · · · , i− 1, replace the edge of M∗ ∩ E(Ui′′ , Ui′′+1)

by the edge (ci′′ , bi′′+1), followed by adding an edge of E({ci}, Ui+1) to M∗. This process

makes M∗ lexicographically larger, contradicting to the assumption that the original M∗ is

the lexicographically largest.

This proves the lemma that the last machine idles for at least m− 2 time units inside

the interval Ii. �

Theorem 3 The lexicographically largest matching based algorithm Approx 2 is an

O(n2 + m)-time (2 − 2
m)-approximation for the problem F | spine, pij = 1 | Cmax, where

m > 3 is the number of machines in the flow-shop, and the approximation ratio is tight.

72 ZHANG An, CHEN Yong, CHEN Guangting, et al. Vol.26

Proof Recall that in the second step of the algorithm Approx 2, a lexicographically

largest matching M∗ in the graph G = (V,E) is computed in O(n2) time, and from M∗ a

feasible schedule π is constructed in O(n+m) time which has a makespan Cmax 6 n+ (m−
1)`− |M∗|. The total running time is thus O(n2 +m).

By Lemma 11 and the fact that the defined time intervals Ii’s do not overlap, we have

another lower bound of the minimum makespan as

C∗FS > n+m− 1 + (m− 2)(`− 1− |M∗|). (5)

Using these lower bounds in Eqs. (1) and (5), we have

Cmax 6 C
∗
FS+(m−3)|M∗|+(`−1) 6 C∗FS+(m−2)(`−1) < C∗FS+

m− 2

m
C∗FS = (2− 2

m
)C∗FS .

That is, Approx 2 is a (2 − 2
m)-approximation algorithm for the problem F | spine, pij =

1 | Cmax.

To prove the tightness of the ratio 2− 2
m , consider the instance shown in Fig. 5, in which

there are m machines in the flow-shop, n = (2k + 2)m jobs, and the precedence graph is a

spine graph containing 2k + 1 levels. In the constructed auxiliary graph a lexicographically

largest matching contains 2k edges (for example, M∗ = {(im+1, (i+1)m), i = 1, 2, · · · , 2k})
resulting in a schedule with makespan n+ (m− 1)(2k+ 1)− 2k = (4m− 4)k+ (3m− 1). On

the other hand, one sees that the identity permutation (1, 2, · · · , n) gives rise to a feasible

no-wait schedule to process all the n jobs consecutively (and thus optimal), for which the

makespan is n + (m − 1) = 2mk + (3m − 1). It follows that the performance ratio of the

U1

U2

U3

U4

U2k

U2k+1

m m+2

m+1

......

... ...

...

... ...

...

2m

3m
3m−1

5m

3m+2

(2k+1)m

(2k+2)m

(2k+1)m−1 (2k+1)m+1

(2k−1)m+1

2km+1

2m+1

3m+1

4m

1 2

Fig. 5 The spine precedence graph G = (V,E) of the instance showing the tightness of the ratio:

Each layer Ui is indicated by a dashed oval and the directions of all the edges are downwards

No.3 Precedence constrained scheduling problems 73

algorithm Approx 2 on this instance is

(4m− 4)k + (3m− 1)

2mk + (3m− 1)
−→ 2− 2

m
,

when k (or equivalently, n = (2k + 2)m) approaches +∞. �

4 Concluding remarks

We studied the precedence constrained scheduling of unit jobs on an open-shop and

a flow-shop, in which the number m of machines is part of the input. Both problems are

strongly NP-hard[14, 13]. We observed the jobs on the spine of the precedence graph and

characterized improved lower bounds on the minimum makespan in terms of the number

of agreeable pairings among certain jobs. We then presented a maximum matching based

(2 − 2
m)-approximation algorithm for O | prec, pij = 1 | Cmax and for F | spine, pij = 1 |

Cmax, respectively. The performance ratios are shown tight. The complexity of the problem

F | spine, pij = 1 | Cmax is unknown yet, but it seems to be NP-hard as we see from the

algorithm design and the tight instance that an exact m-set cover seems to be involved.

We nevertheless leave it as an open question. One thus might wonder whether a similar

conclusion to the multiprocessor scheduling[8] holds, that it is NP-hard to approximate

either problem within a constant factor strictly less than 2.

References

[1] Pinedo M. Scheduling: Theory, Algorithm and Systems (5th Ed.) [M]. New York: Springer,

2016.

[2] Graham R L. Bounds for certain multiprocessing anomalies [J]. Bell Labs Technical Journal,

1966, 45: 1563-1581.

[3] Graham R L, Lawler E L, Lenstra J K, et al. Optimization and approximation in deterministic

sequencing and scheduling: A survey [J]. Annuals of Discrete Mathematics, 1979, 5: 287-326.

[4] Lam S, Sethi R. Worst case analysis of two scheduling algorithms [J]. SIAM Journal on Com-

puting, 1977, 6: 518-536.

[5] Braschi B, Trystram D. A new insight into the Coffman-Graham algorithm [J]. SIAM Journal

on Computing, 1994, 23: 662-669.

[6] Gangal D, Ranade A. Precedence constrained scheduling in (2− 7
3p+1

)·optimal [J]. Journal of

Computer and System Sciences, 2008, 74: 1139-1146.

[7] Bansal N, Khot S. Optimal long code test with one free bit [C]//Proceedings of FOCS 2009,

2009: 453-462.

[8] Svensson O. Conditional hardness of precedence constrained scheduling on identical machines

[C]//Proceedings of STOC 2010, 2010: 745-754.

[9] Garey M R, Johnson D S. Computers and Intractability: A Guide to the Theory of NP-

Completeness [M]. San Francisco: W. H. Freeman & Co., 1979.

[10] Schuurman P, Woeginger G J. Polynomial time approximation algorithms for machine schedul-

ing: Ten open problems [J]. Journal of Scheduling, 1999, 2: 103-213.

[11] Levey E, Rothvoss T. A (1 + ε)-approximation for makespan scheduling with precedence

constraints using LP hierarchies [C]//Proceedings of SODA 2016, 2016: 168-177.

74 ZHANG An, CHEN Yong, CHEN Guangting, et al. Vol.26

[12] Prot D, Bellenguez-Morinea O. A survey on how the structure of precedence constraints may

change the complexity class of scheduling problems [J]. Journal of Scheduling, 2018, 21: 3-16.

[13] Leung J Y T, Vornberger O, Witthoff J D. On some variants of the bandwidth minimization

problem [J]. SIAM Journal on Computing, 1984, 13: 650-667.

[14] Timkovsky V G. Identical parallel machines vs. unit-time shops and preemptions vs. chains in

scheduling complexity [J]. European Journal of Operational Research, 2003, 149: 355-376.

[15] Brucker P, Jurisch B, Jurisch M Z. Open shop problems with unit time operations [J]. Opera-

tions Research, 1993, 37: 59-73.

[16] Bruno J, Jones III J W, So K. Deterministic scheduling with pipelined processors [J]. IEEE

Transactions on Computers, 1980, 29: 308-316.

[17] Bräsel H, Kluge D, Werner F. A polynomial algorithm for the [n/m/0, tij = 1, tree/Cmax] open

shop problem [J]. European Journal of Operational Research, 1994, 72: 125-134.

[18] Brucker P, Knust S. Complexity results for single-machine problems with positive finish-start

time-lags [J]. Computing, 1999, 63: 299-316.

[19] Chen Y, Goebel R, Lin G, et al. Open-shop scheduling for unit jobs under precedence con-

straints. Theoretical Computer Science, 2020, 803: 144-151.

[20] Tanaev V S, Sotskov Y N, Strusevich V A. Scheduling Theory: Multi-Stage Systems [M].

Netherlands: Springer, 1994.

[21] Hopcroft J E, Karp R M. An n
5
2 algorithm for maximum matchings in bipartite graphs [J].

SIAM Journal on Computing, 1973, 2: 225-231.

[22] Karzanov A V. O nakhozhdenii maksimal’nogo potoka v setyakh spetsial’nogo vida i nekoto-

rykh prilozheniyakh (in Russian; title translation: On finding maximum flows in networks with

special structure and some applications) [J]. Matematicheskie Voprosy Upravleniya Proizvod-

stvom, 1973, 5: 81-94.

[23] Madry A. Navigating central path with electrical flows: From flows to matchings, and back

[C]//Proceedings of FOCS 2013, 2013: 253-262.

[24] Potts C N, Shmoys D B, Williamson D P. Permutation vs. non-permutation flow shop schedules

[J]. Operations Research Letters, 1991, 10: 281-284.

