不确定参数下n人非合作博弈的逼近定理

展开
  • 1. 贵州大学数学与统计学院, 贵州贵阳 550025
杨辉 E-mail: huiyang@gzu.edu.cn

收稿日期: 2022-04-14

  网络出版日期: 2025-03-08

基金资助

贵州省科技计划项目(No.黔科合基础[2019] 1067号);贵州大学引进人才科研项目(No.[2017] 59)

版权

运筹学学报编辑部, 2025, 版权所有,未经授权,不得转载。

An approximation theorem for n-person non-cooperative games under uncertain parameters

Expand
  • 1. School of Mathematics and Statistics, Guizhou University, Guiyang 550025, Guizhou, China

Received date: 2022-04-14

  Online published: 2025-03-08

Copyright

, 2025, All rights reserved. Unauthorized reproduction is prohibited.

摘要

在已知不确定参数变化范围的前提下, 本文研究了不确定参数下n人非合作博弈的逼近定理。基于有限理性思想, 我们证明了不确定参数下n人非合作博弈的逼近定理, 为其NS平衡的求解算法提供了一个理论支撑。进一步, 我们通过一个具体算例验证了该结论的合理性。

本文引用格式

陈聪利, 杨辉, 杨光惠, 王春 . 不确定参数下n人非合作博弈的逼近定理[J]. 运筹学学报, 2025 , 29(1) : 105 -113 . DOI: 10.15960/j.cnki.issn.1007-6093.2025.01.009

Abstract

In this paper, suppose that the range of varying uncertain parameters is known, an approximation theorem for n-person non-cooperative games with uncertain parameters is investigated. Based on the idea of bounded rationality, we prove the approximation theorem of n-person non-cooperative games with uncertain parameters, which provides a theoretical support for solving algorithm of NS-equilibria. In addition, we verify the rationality of this conclusion through a specific example.

参考文献

1 Nash J F . Equilibrium points in n-person games[J]. Proceedings of the National Academy of Sciences, 1950, 36 (1): 48- 49.
2 Nash J F . Non-cooperative games[J]. Annals of Mathematics, 1951, 54 (2): 286- 295.
3 Simon H A. 管理行为[M]. 杨砺, 韩春立, 译. 北京: 北京经济学院出版社, 1991.
4 Simon H A . A behavioral model of rational choice[J]. The Quarterly Journal of Economics, 1955, 69 (1): 99- 118.
5 俞建. 博衮论十五讲[M]. 北京: 科学出版社, 2020.
6 俞建. 有限理性与博交论中平衡点集的稳定性[M]. 北京: 科学出版社, 2017.
7 俞建. 博交论与非线性分析[M]. 北京: 科学出版社, 2008.
8 俞建. 博率论与非线性分析续论[M]. 北京: 科学出版社, 2011.
9 俞建. 几类考虑有限理性平衡问题解的稳定性[J]. 系统科学与数学, 2009, 29 (7): 999- 1008.
10 俞建, 贾文生. 有限理性研究的博弯论模型[J]. 中国科学: 数学, 2020, 50 (9): 1375- 1386.
11 Simon H A . Administrative Behavior: A Study of Decision-Making Processes in Administrative Organizations[M]. Beijing: Mechanical Industry Press, 2013.
12 Chen B , Liu Q Y , Huang N J . Connectedness of approximate solutions set for vector equilibri- um problems in Hausdorff topological vector spaces[J]. Fixed Point Theory and Applications, 2011, 36, 1- 11.
13 Qiu X L , Jia W S , Peng D T . An approximation theorem and generic convergence for equilib- rium problems[J]. Journal of Inequalities and Applications, 2018, 30, 1- 12.
14 陈华鑃, 贾文生. 群体博交的逼近定理及通有收敛性[J]. 数学物理学报, 2021, 41 (5): 1566- 1573.
15 Zhukovskii V I . Linear Quadratic Differential Games[M]. Naoukova Doumka: Kiev, 1994.
16 Larbani M. About the existence of Nash-Slater equilibrium for a non-cooperative game under uncertainty[M] //Caballero R, Ruiz F, Steuer R. Advances in Multiple Objective and Goal Programming. Berlin: Springer-Verlag, 1997: 255-262.
17 杨哲, 蒲勇健, 郭心毅. 不确定性下多目标博弈中弱Pareto-NS均衡的存在性[J]. 系统工程理论与实践, 2013, 33 (3): 660- 665.
18 高静, 邬冬华, 张广. 不确定条件下人非合作博亦均衡点集的通有稳定性[J]. 应用数学与计算数学学报, 2014, 28 (3): 336- 342.
19 王能发. 有限理性下不确定性博亦均衡的稳定性[J]. 应用数学学报, 2017, 40 (4): 562- 572.
20 赵薇, 杨辉, 吴隽永. 不确定参数下群体博弈均衡的存在性与通有稳定性[J]. 应用数学学报, 2020, 43 (4): 627- 638.
21 Zhao W , Yang H , Deng X C , et al. Stability of equilibria for population games with uncertain parameters under bounded rationality[J]. Journal of Inequalities and Applications, 2021, 15, 1- 13.
文章导航

/