保费和索赔到达率与余额相依的最优有界分红率问题

展开
  • 1. 河北工业大学理学院, 天津 300401
    2. 河北工业大学经济管理学院, 天津 300401
刘国欣 E-mail: gxliu@hebut.edu.cn

收稿日期: 2018-12-10

  网络出版日期: 2021-03-05

基金资助

国家自然科学基金(11471218)

Optimal dividend strategies for surplus-dependent premiums and surplus-dependent claim arrivals rates: the cases of bounded dividend rates

Expand
  • 1. School of Science, Hebei University of Technology, Tianjin 300401, China
    2. School of Economics and Management, Hebei University of Technology, Tianjin 300401, China

Received date: 2018-12-10

  Online published: 2021-03-05

摘要

研究保费和索赔到达率与余额相依的最优有界分红问题,目标是最大化破产前的累积期望折现分红。首先,给出一个策略是平稳马氏策略的充分必要条件,运用测度值生成元的理论得到测度值动态规划方程(DPE),并且给出了验证定理的证明。最后,讨论了测度值DPE和相应拟变分不等式(QVI)之间的关系,并且证明了最优分红策略为具有波段结构的平稳马氏策略。

本文引用格式

刘雪, 李静伟, 刘国欣 . 保费和索赔到达率与余额相依的最优有界分红率问题[J]. 运筹学学报, 2021 , 25(1) : 31 -49 . DOI: 10.15960/j.cnki.issn.1007-6093.2021.01.003

Abstract

In this paper, we consider the optimal dividend problem with bounded dividend rate for the risk model with surplus-dependent premiums and surplus-dependent claim arrivals. The objective is to maximize the expected cumulative discounted dividends payment up to the time of ruin. Firstly, we prove that the necessary and sufficient condition for a strategy to be a stationary Markov strategy. Using the the theory of measure-valued generators, we derive the associated measure-valued dynamic programming equation (DPE). Finally, we discuss the relationship between the measure-valued DPE and the corresponding quasi-varational inequalities (QVI), and show that the optimal dividend strategy is a stationary Markov strategy with a band structure.

参考文献

1 De Finetti B . Su un'impostazione alternativa della teoria collettiva del rischio[J]. Transactions of the XVth International Congress of Actuarie, 1957, 2, 433- 443.
2 Asmussen S , Hojgaard B , Taksar M . Optimal risk control and dividend distribution policies. Example of excess-of loss reinsurance for an insurance corporation[J]. Finance Stochastic, 2000, 4 (3): 299- 324.
3 Jgaard B H , Taksar M . Controlling risk exposure and dividends payout schemes: insurance company example[J]. Mathematical Finance, 1999, 9 (2): 153- 182.
4 Thonhauser S , Albrecher H . Dividend maximization under consideration of the time value of ruin[J]. Insurance Mathematics Economics, 2007, 41 (1): 163- 184.
5 Hans U , Gerber A S A , Elias S W , et al. On optimal dividend strategies in the compound Poisson model[J]. North American Actuarial Journal, 2006, 10 (2): 76- 93.
6 Asmussen S , Taksar M . Controlled diffusion models for optimal dividend pay-out[J]. Insurance Mathematics Economics, 1997, 20 (1): 1- 15.
7 Fang Y , Wu R . Optimal dividend strategy in the compound Poisson model with constant interest[J]. Stochastic Models, 2007, 23, 149- 166.
8 Azcue P , Muler N . Optimal dividend policies for compound Poisson processes: The case of bounded dividend rates[J]. Insurance Mathematics Economics, 2012, 51 (1): 26- 42.
9 Davis M H A . Piecewise-deterministic Markov processes: A general class of non-diffusion stochastic models[J]. Journal of the Royal Statistical Society, 1984, 46 (3): 353- 388.
10 Marciniak E , Palmowski Z . On the optimal dividend problem for insurance risk models with surplus-dependent premiums[J]. Journal of Optimization Theory Applications, 2016, 168 (2): 723- 742.
11 Feng R , Zhang S , Zhu C . Optimal dividend payment problems in piecewise-deterministic compound Poisson risk models[J]. Decision and Control, 2013, 7309- 7314.
12 Liu Z, Jiao Y, Liu G. Measure-valued generators of general piecewise deterministic Markov processes[J]. 2017, arXiv: 1704.00938v3.
文章导航

/